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Diffuse gliomas are the most common malignant brain tumors 
in adults and are incurable. Extensive molecular character-
ization of gliomas has defined genomic drivers and clinically 

relevant subtypes, such as those based on the presence of IDH1/2 
gene mutations (that is, IDH mutant and IDH wild-type (WT))1–3. 
Inter- and intratumoral heterogeneity are salient features across 
glioma subtypes that contribute to universal therapeutic resistance. 
The heterogeneity observed in surgical resection specimens reflects 
each tumor’s evolutionary path, which is driven by competition 
between subpopulations harboring diverse genetic, epigenetic and 
transcriptional aberrations4–8. Thus, understanding how these dif-
ferent layers of heterogeneity integrate to define clonal lineages and 
drive glioma evolution may provide insights into treatment failure.

The study of tumor heterogeneity is complicated by cellular 
plasticity that enables cancer cells to reversibly transition between 
distinct cellular states in response to genetic, microenvironmental 
and therapeutic stimuli9. Single-cell RNA sequencing (scRNA-seq) 
studies have previously identified such dynamic cellular states in 
IDH WT gliomas10–13. Cell states of IDH mutant gliomas displayed a 
more restricted plasticity along a hierarchical differentiation axis14,15. 
Epigenetic modifications, such as DNA methylation (DNAme) 

at cytosine followed by guanine dinucleotides (that is, CpGs), are 
mitotically heritable marks and encode cellular states and dynam-
ics16. For example, the transition from a differentiated-like state  
to an undifferentiated, or stem-like, state after chemotherapy in 
glioma was accompanied by epigenetic reprogramming17. However, 
the epigenetic mechanisms that enable cellular plasticity and regu-
late glioma cell states are poorly understood.

Aberrant DNAme resulting from errors in the placement or 
removal of epigenetic marks can provide genetically identical cells, 
the diversity needed to respond to environmental stressors. These 
stochastic errors in DNAme replication result in increased local 
DNAme disorder18. DNAme disorder is present in non-tumor cells, 
potentially reflecting active epigenetic remodeling, DNAme drift 
associated with age or environmental exposures19. DNAme disorder 
may accumulate in cancer cells as passenger events or be evolution-
arily selected by destabilizing gene expression programs9. Previous 
studies of glioma have demonstrated associations between bulk 
tumor epigenetic heterogeneity metrics and clinical outcomes2,5,20. 
Together, these findings suggest that stochastic DNAme alterations 
contribute to tumor heterogeneity and cellular plasticity that may 
drive the evolution of treatment-resistant phenotypes.
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Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and contributes to therapeutic resis-
tance. We integrated 914 single-cell DNA methylomes, 55,284 single-cell transcriptomes and bulk multi-omic profiles across 
11 adult IDH mutant or IDH wild-type gliomas to delineate sources of intratumoral heterogeneity. We showed that local DNA 
methylation disorder is associated with cell–cell DNA methylation differences, is elevated in more aggressive tumors, links 
with transcriptional disruption and is altered during the environmental stress response. Glioma cells under in vitro hypoxic 
and irradiation stress increased local DNA methylation disorder and shifted cell states. We identified a positive association 
between genetic and epigenetic instability that was supported in bulk longitudinally collected DNA methylation data. Increased 
DNA methylation disorder associated with accelerated disease progression and recurrently selected DNA methylation changes 
were enriched for environmental stress response pathways. Our work identified an epigenetically facilitated adaptive stress 
response process and highlights the importance of epigenetic heterogeneity in shaping therapeutic outcomes.
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In this study, we integrated single-cell DNA methylomes, 
single-cell transcriptomes and single-cell copy number profiles with 
bulk genomic profiles across a cohort of 11 glioma patient samples 
to dissect heterogeneous cell populations21–24 and define epigenetic 
states that contribute to tumor evolution18,24. We combined these 
in vivo analyses with in vitro perturbations to identify the gene reg-
ulatory regions most susceptible to stochastic DNAme alterations, 
the epigenetic modulation of transcriptional networks involved  
in glioma cellular identity and that DNAme disorder may aid the 
cellular stress response. Our work provides insights into the sources 
of intratumoral heterogeneity that fuel glioma evolution.

Results
Single-cell DNAme links DNAme disorder with epigenetic 
heterogeneity. To investigate glioma heterogeneity, we performed 
single-cell DNAme (scDNAme) and single-cell gene expression 
accompanied by bulk whole-genome sequencing (WGS), RNA 
sequencing and DNAme microarray in 11 adult patients with 
glioma (Fig. 1a). Both principal molecular subtypes (IDH mutant 
and IDH WT) and distinct clinical time points (that is, unmatched 
initial and recurrent tumors; Supplementary Table 1 and Extended 
Data Fig. 1) were represented. We mechanically dissected tumor 
specimens from the same geographical region dissociating tissue for 
single-cell protocols, flash-freezing tissue for bulk genomic assays 
(Fig. 1a). We applied single-cell reduced representation bisulfite 
sequencing (scRRBS) and 10x Genomics single-cell transcriptomics 
on cells from the same dissociation (Extended Data Fig. 2a)25,26. 
Viable CD45− (that is, pan-immune cell marker) cells were plated 
for scRBBS, while single-cell transcriptomics was performed on all 
viable cells, arriving at a set of 914 single-cell methylomes and 55,284 
single-cell transcriptomes. On average, approximately 145,000 mean 
unique CpG dinucleotides or 2,340 expressed genes were measured 
per cell. On average, approximately 8,000 mean CpGs were shared 
between any two cells (Extended Data Fig. 2b–h). Tumor and nor-
mal cells were grouped by inferred copy number alterations result-
ing in a final set of 844 DNAme and 30,831 transcriptomic tumor 
cell profiles (Methods and Extended Data Fig. 3a–i).

Unsupervised clustering and multidimensional scaling (MDS) 
of the pairwise distances between scDNAme patterns grouped 
tumor cells by IDH1 mutation status (Fig. 1b) since IDH mutant 
tumors display greater genome-wide DNAme levels (Wilcoxon 
rank-sum test P < 2.2 × 10−16; Fig. 1c)27. The colocalization of cells 
from different patients suggested shared epigenetic states. The iso-
lated patient-specific grouping of one of six IDH mutant and two 
of five IDH WT tumors may reflect epigenetic diversity that is also 
influenced by genetic intertumoral heterogeneity (Fig. 1b, Extended 
Data Figs. 1 and 4a).

We next evaluated intratumoral epigenetic heterogeneity by 
quantifying stochastic DNAme alterations in each single cell. In 
normal cells, DNAme congruence in nearby CpGs reflects tightly 
ordered gene regulation (Fig. 1d, top)28. Local DNAme disorder 
may disrupt both proximal and distal gene regulation (Fig. 1d, bot-
tom)16. We defined DNAme disorder within a cell and across spe-
cific genomic compartments as the proportion of sequencing reads 
discordant for DNAme status (PDR) as described previously5,18,29. 
Cell–cell DNAme disorder variation differed by tumor (Fig. 1e) 
and was increased in tumor cells compared with non-tumor cells 
(Wilcoxon rank-sum test P < 0.0001; Extended Data Fig. 4b). Total 
somatic single-nucleotide variant burden, reflecting patient age30 
and mutational processes (Extended Data Fig. 4c), was not associ-
ated with mean DNAme disorder (Spearman correlation ρ = 0.26, 
P = 0.43), independent of sequence context (Extended Data Fig. 4d).  
However, DNAme disorder was associated with the fraction of 
the genome with somatic copy number alteration (SCNA) bur-
den (Spearman correlation ρ = 0.66, P = 0.03; Fig. 1e). Cell cycle 
checkpoint deregulation, which generates SCNAs through a cell’s 

compromised ability to correct mis-segregations31, may continue to 
drive stochastic DNAme replication errors during evolution rather 
than being elevated in the tumor cell of origin.

To examine whether local DNAme disorder is associated with 
broad DNAme heterogeneity, we calculated the DNAme disorder 
and DNAme status for each cell across specific genomic contexts 
including: CpG islands (CGIs) and CGI shores, Alu repeat ele-
ments and chromatin remodelers (EZH2 and CTCF; Extended Data  
Fig. 4e). In high DNAme regions (for example, Alu repeat elements),  
increased DNAme disorder was associated with decreased DNAme, 
while in lower DNAme regions (for example, CGIs), an increased 
DNAme disorder was associated with increased DNAme (Extended 
Data Fig. 4e; Spearman correlation P < 0.01). These associations 
persisted in individual tumors (Fig. 1f,g; Spearman correlation 
P < 0.01), highlighting how local DNAme disorder may reflect 
epigenetically dynamic regions that contribute to the observed 
intratumoral epigenetic heterogeneity32,33. To compare inter- and 
intratumoral DNAme variation, median absolute deviations were 
calculated across single cells, grouping cells by subtype (Extended 
Data Fig. 4f) and patient (Extended Data Fig. 4g). Consistent 
with the results of unsupervised clustering (Fig. 1b), intertumoral  
heterogeneity was approximately 2–3 times greater (IDH WT) than 
intratumoral heterogeneity (Extended Data Fig. 4f,g), with promot-
ers/CGIs representing variably methylated regions within a tumor. 
The DNAme disorder tended to increase moving away from CGI 
centers (Spearman correlation R = 0.5, P = 3.1 × 10−8 IDH mutant 
and R = 0.6, P = 4.1 × 10−7 IDH WT) suggesting that selection may 
reduce DNAme disorder that impairs cellular fitness at these tightly 
regulated regions (Fig. 1h). Together, scDNAme profiling suggests 
that the variability observed at critical gene regulatory regions is 
influenced by DNAme disorder and higher levels of disorder may 
reflect epigenetic remodeling.

Elevated DNAme disorder in cell identity and stress pathways. 
DNAme disorder may disrupt transcriptional programs18. Using 
companion scRNA-seq data, we examined the association between 
DNAme disorder and gene expression. Mean expression was 
reduced (Kruskal–Wallis P < 2.2 × 10−16; Fig. 2a) with increased 
levels of DNAme disorder at both promoters and gene bodies 
(Kruskal–Wallis P < 2.2 × 10−16; Fig. 2a and Extended Data Fig. 5a). 
Previous CGI observations (Fig. 1g) suggest that DNAme disorder 
at gene regulatory regions usually results in repressive DNAme 
(Extended Data Fig. 5b,c), contributing to gene expression dysregu-
lation. Gene Ontology (GO) enrichment analysis on genes with high 
DNAme disorder (that is, DNAme disorder > 0.4) and genes with 
low DNAme disorder (that is, DNAme disorder = 0–0.1) (Methods) 
found that high DNAme disorder genes associate with cellular dif-
ferentiation processes (Fisher’s exact test adjusted P < 0.05; Fig. 2b) 
and low DNAme disorder genes associate with critical cell cycle and 
metabolic processes (Fisher’s exact test adjusted P < 0.05; Fig. 2c). 
The enrichment results were consistent when using promoter or 
gene body DNAme disorder groupings (Extended Data Fig. 5d,e).

Changes in DNAme patterns at DNA-binding motifs can posi-
tively or negatively impact transcription factor binding34. We 
identified regulatory elements susceptible to DNAme changes by 
determining DNAme disorder of transcription factor binding site 
(TFBS) motifs (Fig. 2d). Most TFBS motifs showed higher DNAme 
disorder in IDH WT compared with IDH mutant cells, consistent 
with general subtype differences. Transcription factors essential for 
glioma stem cell maintenance (for example, SOX2, SOX9 (ref. 35)) 
had lower than median binding site motif DNAme disorder indepen-
dent of surrounding motif CpG density, implying selection against 
DNAme changes at these target regions (Fig. 2d and Extended Data 
Fig. 5f). In contrast, transcription factors with higher binding site 
motif scDNAme disorder (Methods) were related to the response 
to extracellular stimuli (Extended Data Fig. 5g). Increased DNAme 
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Fig. 1 | Single-cell DNA sequencing highlights the association between epigenetic intratumoral heterogeneity and local DNAme disorder. a, Schematic 
diagram detailing tumor sample processing and molecular profiling of single cells and bulk tumor samples (n = 11 individuals). b, MDS analysis using 
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent whether a sample was a single tumor cell (n = 844 cells) 
or 50 tumor cells (n = 9 out of 11 individuals). The colors indicate individual patients, the shaded regions indicate the IDH1 mutation status of the tumor 
and annotation is provided indicating clinical time point (I = initial, R = recurrence). c, Box plots depicting single-cell mean 10-kb tiled DNAme with 
individuals in columns and separated by IDH mutation status (color). Each box spans the 25th and 75th percentile, the center lines indicate the median 
and the whiskers represent the absolute range (minimum/maximum), excluding outliers. The two-sided Wilcoxon rank-sum test P value is presented to 
compare IDH mutant versus IDH WT cells. d, Schematic depiction of local DNAme disorder in different genomic contexts. Top: Promoter region where 
DNAme disorder is associated with disrupted gene expression. Bottom: Example of disrupted transcription factor binding due to DNAme disorder. e, Box 
plots of glioma cell DNAme disorder grouped by individual. The two-sided Wilcoxon rank-sum P value represents the comparison between IDH mutant 
and IDH WT DNAme disorder. Each individual is annotated with clinical and molecular metrics with P values indicating the relationship between sample 
mean DNAme disorder and WGS-derived somatic mutation burden or somatic copy number alteration burden (Spearman correlation). f,g, Alu repeat 
element (f) and CGI-specific (g) scDNAme disorder and DNAme are shown in scatter plots with linear regression lines colored per individual patient. 
Patient-specific Spearman correlation coefficients and P values are presented in Supplementary Table 2. Significant associations are denoted by ‘#’ in 
f and ‘X’ in g. h, Mean DNAme values (top) and DNAme disorder (bottom) across CGIs with upstream and downstream CGI shores. Each individual 
is represented by a single curve and colored by its IDH mutation subtype. Subtype-specific Spearman correlation coefficient and P values indicate the 
relationship between distance from the CGI center and increase in mean cell DNAme and DNAme disorder.
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disorder levels at environmental stress response regulators may 
facilitate an adaptive response to stressors, such as hypoxia, which is 
common in glioma36. To substantiate this association, we performed 
single-sample gene set enrichment analyses using bulk RNA-seq 
data and demonstrated positive associations between tumor average 
DNAme disorder and upregulated stress response (Spearman cor-
relation R = 0.9, P < 0.01) or cellular response to hypoxia (Spearman 
correlation R = 0.98, P < 0.001), but not randomly selected genes 
(Spearman correlation R = −0.05, P > 0.05; Extended Data Fig. 5h). 
Taken together, these results suggest that intratumoral variability in 
DNAme disorder may facilitate the adoption of distinct epigenetic 
states in response to stress stimuli.

Single-cell multi-omics identifies epigenetic cell state regula-
tors. To evaluate how DNAme, stress response and cellular states 
are associated, we defined each tumor’s cellular composition using 
single-cell transcriptional profiles. We performed single-cell unsu-
pervised clustering analysis and annotated clusters using marker 
genes (Fig. 3a and Extended Data Fig. 6a–d) to define glial, immune, 
stromal and malignant populations10,12. Malignant cells were dis-
tributed over three canonical stem cell marker SOX2-expressing cell 

states (Extended Data Fig. 6b) and existed across both IDH mutant 
and IDH WT tumors. We labeled these pan-glioma cell states (1) 
differentiated-like, (2) stem-like and (3) proliferating stem-like 
tumor cells (Fig. 3a, Extended Data Fig. 6b and Supplementary 
Table 3). Enumerating the proportion of pan-glioma malignant 
states showed that IDH mutant gliomas are enriched for stem-like 
cells (median 61%), while IDH WT gliomas contained predomi-
nantly differentiated-like cells (median 83%) and significantly more 
proliferating stem-like cells (median 16% IDH WT versus 2% IDH 
mutant, Wilcoxon rank-sum test P = 0.02; Fig. 3b). The previously 
described malignant astrocyte-like and oligodendrocyte-like IDH 
mutant glioma cell types15 corresponded to differentiated-like cells, 
as well as astrocyte-like and mesenchymal-like IDH WT glioma cel-
lular states11 (Fig. 3b and Extended Data Fig. 6e). The proliferating 
stem-like and stem-like states aligned closely with undifferenti-
ated IDH mutant cells and oligodendrocyte progenitor-like, neural 
progenitor-like IDH WT cells, respectively (Extended Data Fig. 6e), 
highlighting the consistency of these pan-glioma signatures with 
existing glioma signatures11,15.

We next inferred gene regulatory networks from single-cell 
expression profiles to identify transcription factors governing cell 
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states37, which predicted a key set of transcription factors for each 
of the three pan-glioma cell states (Fig. 3c,d). Stem-like tumor 
cells demonstrated the highest activity for known stem cell regu-
lators such as SOX2, SOX8 and OLIG2 (Fig. 3c,d). In addition to 
high SOX2/SOX8/OLIG2 activity, proliferating stem-like cells 
showed overrepresentation of chromatin remodeling and DNA 
repair gene networks as directed by EZH2 and BRCA1 (Fig. 3c,d). 
In contrast, differentiated-like cells demonstrated high transcrip-
tion factor activity in astrocyte differentiation (that is, SOX9) and 
stress response (that is, JUND, FOS) processes. We confirmed that 

differentiated-like cells had significantly greater stress and hypoxic 
transcriptional response compared with stem-like cells (Wilcoxon 
rank-sum test, P < 2.8 × 10−9; Extended Data Fig. 6f). DNAme disor-
der did not significantly differ between cell state-specific transcrip-
tion factors (Kolmogorov–Smirnov test P > 0.05; Extended Data 
Fig. 6g). However, high binding site motif DNAme disorder levels 
were observed for several differentiated-like cell state transcription 
factors (for example, JUND and SREBF1), nominating them as cel-
lular fitness regulators whose activity may be influenced by DNAme 
patterns (Fig. 3c,d).
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Fig. 3 | Integrative single-cell gene expression and DNAme analyses nominate epigenetic regulators of glioma cell state variability. a, UMAP 
dimensionality reduction plot of scRNA-seq data (n = 55,284 cells, n = 11 individuals) showing the clustering of cell populations by transcriptionally defined 
cell state (point color) and labeled according to marker gene expression (Extended Data Fig. 6b). b, Stacked bar plots representing the proportion of cellular 
states per tumor for pan-glioma malignant cell classification. Each sample is annotated with molecular metrics with P values indicating the relationship 
between cell type diversity, measured by Shannon’s entropy, and sample mean DNAme disorder, WGS-derived somatic alteration burden or WGS-derived 
somatic mutation burden (Spearman correlation). c,d, Enriched transcription factor activity across pan-glioma cellular states determined using the SCENIC 
algorithm and displayed as a heatmap of cell state median relative z-scores. Visualization is presented for the top 15 most active transcription factors 
of 5,000 randomly downsampled tumor cells in both IDH mutant (c) and IDH WT (d). e, Promoter DNAme disorder for tumors with at least ten cells 
per inferred cell state. Each box spans the 25th and 75th percentile, the center lines indicate the median and the whiskers represent the absolute range 
(minimum/maximum), excluding outliers. The surrounding violins represent the distribution of each condition. Two-sided Wilcoxon rank-sum test P values 
are presented for each tumor. f, Region set enrichment analysis for differentially methylated regions (DMRs, 10-kb tiles) with higher DNAme in stem-like 
(left) or differentiated-like cells (right). Enrichment was determined by LOLA. Individual points represent the enrichment of specific transcription factors in 
DMRs; the color indicates results for specific IDH subtypes; the dotted line represents the statistical significance threshold (adjusted P < 0.05).
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To define the epigenetic states of stem-like and differentiated-like 
cells, we used the linked inference of genomic experimental rela-
tionships (LIGER) method38 to identify shared properties between 
single-cell gene expression and DNAme data (Extended Data Fig. 7a).  
scDNAme and scRNA integration displayed a similar malignant 
cell state distribution within each sample, as expected when derived 
from the same tissue dissociation (Extended Data Fig. 7b). We 
next investigated the DNAme disorder and DNAme properties of 
stem-like (combining stem-like and proliferating stem-like) and 
differentiated-like cell state classifications. In tumors with both 
populations, stem-like cells displayed significantly increased pro-
moter DNAme disorder (5 out of 6 tumors, Wilcoxon rank-sum 
test P < 0.05; Fig. 3e, left) and decreased promoter DNAme (4 out  
of 6 tumors, Wilcoxon rank-sum test P < 0.05; Extended Data  
Fig. 7c), potentially reflecting the greater transcriptional diversity of 
stem-like cells. To identify DNAme changes between stem-like and 
differentiated-like cells, we used a linear mixed effect model with 
tumor of origin as the random effect (Methods). Regions with differ-
ential DNAme across cell states were enriched for SP1 and TFAP2A 
binding sites, two transcription factors that frequently co-regulate 
developmentally associated genes (Fig. 3f)39. We also identified 
increased DNAme at the binding sites of HIF1A/ARNT, the mas-
ter transcriptional regulator of hypoxic response, in stem-like cells  
(Fig. 3f). Since increased DNAme at binding sites may reduce tran-
scription factor binding efficiency, these results suggest that elevated 
cell stress transcription factor activity in differentiated-like cells may 
occur via epigenetic remodeling (Fig. 3f). Together, these results 
suggest that perturbing epigenetic control via DNAme disorder  
may promote the cell state plasticity necessary to tolerate diverse 
stressful microenvironments, including hypoxia40 and therapy17,41,42.

In vitro stress perturbations increase local DNAme disorder. 
To directly determine whether environmental stressors impact 
DNAme disorder and cellular states, we subjected patient-derived 
glioma sphere-forming cells independently to a common tumor 
stress exposure (that is, hypoxia) and therapeutic exposure (that 
is, irradiation) (Fig. 4a). For both experiments, we used bulk RRBS 
with biological replicates (n = 6 average per condition, 60 total  
replicates), and gene expression with scRNA-seq. Importantly, each 
bulk RRBS sequencing read came from a single cell at single-allele 
resolution enabling DNAme disorder comparisons with our 
scRRBS data. We exposed two glioma cell lines to normoxic and 
hypoxic conditions and collected cells at 3 and 9 d. Candidate gene 
expression analyses via real-time PCR demonstrated that a robust  
cellular stress response was already present at the 3-d time point 
with an observed hypoxia dosage effect (Extended Data Fig. 8a,b). 
No hypoxia-associated DNAme disorder changes were detectable at 
the 3-d time point (Wilcoxon rank-sum test P > 0.05; Fig. 4b, left). 
However, there were significant hypoxia-associated DNAme disor-
der increases in both cell lines at the 9-day time point, suggesting 
that DNAme disorder accumulates with successive cell divisions 
(Wilcoxon rank-sum test P < 0.05; Fig. 4b, right). In parallel, we also 
irradiated the two glioma models with 2.5 Gy per day for 4 consecu-
tive days (10 Gy total) and then collected these cells at the 9-d time 
point. Unlike the hypoxia exposure, the irradiation stressor was not 
continuous and measurements were taken after 5 d of recovery. The 
cells exposed to irradiation also demonstrated significant increases 
in DNAme disorder at CGI and promoter regions (Wilcoxon 
rank-sum test P < 0.01; Fig. 4c) compared with the 9-d normoxia 
(0 Gy) samples. We confirmed through WGS that irradiated and con-
trol cells shared highly similar mutational profiles, suggesting that 
the DNAme disorder increases were not due to underlying genetic 
changes (Extended Data Fig. 8c). In both hypoxia and irradiation 
experiments, there was reduced stress-associated DNAme disorder 
in regions flanking CGIs (shores) in one cell line, but no signifi-
cant changes at intergenic regions indicating that DNAme disorder 

may confer different selective advantages dependent on genomic 
context (Fig. 4b,c). DNAme disorder increases under direct stress 
(hypoxia) and after recent stress exposure (irradiation) suggests 
a common stress response mechanism that is retained even after 
stress removal. This is further supported by increased DNAme dis-
order at the binding site motifs of transcription factors whose activ-
ity is associated with cell fitness (Extended Data Fig. 8d), including 
upregulated ELK4, which contributes to the malignant phenotype 
through c-Fos regulation43, and downregulated TFDP1, which pro-
motes transcription from E2F target genes44, whose altered activity 
levels may enable survival under stress (Extended Data Fig. 8e).

We next assessed whether stress-associated DNAme disorder 
increases are linked to cellular state shifts using scRNA-seq (10 total 
replicates, n = 5 conditions for 2 cell lines each, n = 24,460 cells). 
Unsupervised clustering by cell line demonstrated that stressed 
cells did not adopt new cell states but manifested as population cell 
state distribution shifts (Fig. 4d–g). This was supported by relatively 
few stress-specific differentially expressed genes (hypoxia = 166 
(H2354), 68 (HF3016); irradiation = 27 (H2354), 26 (HF3016); 
Wilcoxon rank-sum test adjusted P < 0.05) that tended to be highly 
expressed across all states within a condition (for example, TXNIP 
in hypoxia; Extended Data Fig. 8g,h). We observed that there were 
hypoxia-associated increases in differentiated-like cell and reduc-
tions in proliferating stem-like cell proportions across both cell 
lines (chi-squared P <2.2 × 10−16; Fig. 4e,g). Response to irradia-
tion resulted in an increased stem-like compartment for HF2354 
and a greater differentiated-like cell compartment for HF3016 
(chi-squared test P < 0.01). After 9 d, cell state distributions of 
both irradiated cell models and the hypoxia condition for HF3016 
were more comparable to controls, suggesting that stress-induced 
transcriptional shifts can be transient. We confirmed these 
stress-associated cell state shifts using a proliferation-independent 
IDH WT-specific cell classifier (Extended Data Fig. 8i,j). Taken 
together, stress-associated increases in DNAme disorder suggest 
that distinct microenvironmental pressures contribute to intratu-
moral epigenetic heterogeneity that may facilitate or stabilize adap-
tive cell state shifts.

SCNAs are positively correlated with DNAme disorder. We next 
investigated whether cellular stress resulting from genetic stimuli, 
in addition to environmental stimuli, could further explain DNAme 
disorder variability across a tumor. The fraction of the genome with 
SCNAs correlated with DNAme disorder at the bulk level (Spearman 
correlation ρ = 0.66, P = 0.03; Fig. 1e) and at the single-cell level for 
promoter-specific DNAme disorder and single-cell-inferred SCNAs 
(Spearman correlation R = 0.70, P < 2.2 × 10−16 IDH mutant and 
R = 0.6, P < 2.2 × 10−16 IDH WT; Fig. 5a). There were 3 significant 
intratumoral positive associations (Spearman correlation P < 0.05; 
Fig. 5a) indicating a weaker genetic effect or greater influence of 
microenvironmental stressors within a single tumor (Fig. 5a). To 
determine whether this relationship was driven by greater DNAme 
disorder in copy number altered regions, we calculated the DNAme 
disorder by cell in copy number-altered and non-altered regions. 
We did not observe a consistent relationship between DNAme 
disorder and the copy number status in scDNAme data (paired 
Wilcoxon rank-sum test P > 0.05). This suggests that aneuploidy 
does not directly account for epigenetic diversity increases but 
that genetic and epigenetic events are shaped by similar biologi-
cal processes (for example, DNA replication stress). Late replicat-
ing regions of the genome accumulate more DNA mutations and 
structural rearrangements45 and we observed a positive association 
between single-cell promoter and gene body DNAme disorder with 
later replicating regions (Kruskal–Wallis P < 1 × 10−4; Fig. 5b). Late 
replicating genomic regions may have reduced capacity to correct 
aberrant methylation leading to their preferential accumulation in a 
largely stochastic manner.
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To validate the relationship between SCNA and DNAme dis-
order, we reanalyzed the bulk RRBS and copy number profiles of 
initial (n = 255 patients) and recurrent (n = 129 patients) IDH WT 
gliomas, including matched pairs (n = 98 patients)5. SCNA burden 
was positively associated with DNAme disorder at both initial and 
recurrent time points, confirming our findings (Spearman corre-
lation R = 0.43, P = 3.5 × 10−13 initial; R = 0.33, P = 1.7 × 10−4 recur-
rence; Fig. 5c). We repeated our analysis using only paired initial 

and recurrent samples and observed a positive association between 
increases in SCNA burden and DNAme disorder (Spearman correla-
tion R = 0.37, P = 0.0002; Fig. 5d). Furthermore, the greatest changes 
in DNAme disorder between initial and recurrent tumor were asso-
ciated with a shorter time to second surgery in both univariate 
(log-rank test P = 0.04; Fig. 5e) and multivariate survival analyses 
(Cox proportional hazards model, hazard ratio (HR) = 1.55 95% con-
fidence interval (CI) = 1.39–2.34, P = 0.03; Supplementary Table 3)  
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Fig. 4 | Environmental stressors increase local DNAme disorder in vitro and are associated with cellular state shifts. a, In vitro experimental workflow. 
Patient-derived glioma sphere-forming cells were exposed to continuous stress (hypoxia, 3 and 9-d), stress followed by recovery (irradiation, 4-d stress 
exposure and 5-d recovery) and no stress/normoxia controls. Biological replicates were then profiled with bulk RRBS (n = 6 average per condition) and 
scRNA-seq. b, Box plot of relative DNAme disorder (normalized to controls) for hypoxia at the 3-d time point (left) and 9-d time point (right). Each box 
spans the 25th and 75th percentile, the center lines indicate the median and the whiskers represent the absolute range (minimum/maximum), excluding 
outliers. Two-sided Wilcoxon rank-sum test P values are presented for different genomic contexts. Each row represents a distinct IDH WT patient-derived 
cell line (HF2354 and HF3016). c, Relative DNAme disorder for irradiated (10 Gy) compared with no exposure controls (normoxia, 0 Gy). d, UMAP 
dimensionality reduction plot of scRNA-seq for HF2354 exposed to 3-d hypoxia, 9-d hypoxia and 9-d irradiation with no treatment controls. The inset 
UMAP projections are identical with different annotations to demonstrate the different stress conditions, the pan-glioma cell states described here and the 
proliferation-independent cell states (Neftel et al.11). e, Stacked bar plot for the pan-glioma cell states summarized by stress exposure and time point for 
HF2354 (n = 11,488 cells). Chi-squared tests for significant changes in cellular proportions between exposures are presented (***P < 2.2 × 10−16, **P < 0.01). 
f, UMAP projection across stress conditions, pan-glioma cell states and proliferation-independent cell states for the second independent cell line HF3016 
(n = 12,972 cells). g, Stacked bar plot for pan-glioma cell states for HF3016 summarized by stress exposure and time point.
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supporting that increased epigenetic instability is associated with 
accelerated disease progression. We did not observe a significant 
positive association with overall survival (Cox proportional haz-
ards model, HR = 1.43 95% CI = 0.93–2.20, P = 0.10; Supplementary 
Table 4). SCNA burden or aneuploidy results from errors in mitotic 
checkpoints, which may further perpetuate DNAme disorder and 
epigenetic heterogeneity through aneuploidy-induced metabolic 
and replication stress31.

Genomic alterations influence but do not define cell states. The 
processes driving genetic, epigenetic and transcriptomic heteroge-
neity may act at different times with dynamic effects on cellular state 
distributions. To evaluate the timing and relative impact of genetic 
alterations on epigenetic and transcriptomic intratumoral heteroge-
neity, we inferred clonal phylogenies from bulk WGS data. One to 
four subclonal populations were detected per tumor (Fig. 6a), with 
linear and branched evolutionary patterns consistent with previous 
reports1,6. Chromosomal arm-level SCNA events were more likely 
to be classified as clonal/early (Fisher’s exact test P = 0.03; Extended 
Data Fig. 9a), while mutations at genes significantly mutated in gli-
oma were more evenly distributed across subclones (56.1% classified 

as clonal in non-hypermutant tumors) (Methods and Extended Data 
Fig. 9b–i). To determine how strongly intratumoral genetic heteroge-
neity is linked with epigenetic heterogeneity we compared the distri-
bution of cell states, DNAme and DNAme disorder across single-cell 
copy number-based hierarchal clustering (scRRBS; Extended Data 
Fig. 10a–c). DNAme and DNAme disorder levels differed across 
copy number clusters, suggesting genetic and epigenetic coevolu-
tion (Wilcoxon rank-sum test P < 0.05; Extended Data Fig. 10a–c). 
However, LIGER-defined cell state DNAme patterns were distrib-
uted across distinct copy number profiles suggesting a convergence 
on shared epigenetic states. We next asked whether genetic tumor 
subclones were associated with transcriptional diversity. We inferred 
single-cell transcriptome copy number profiles and found that 3 of 
11 tumors (SM001, SM006 and SM012) had at least 2 distinct clones 
with chromosome arm-level alterations (Fig. 6b and Extended 
Data Fig. 3). These tumors demonstrated significant cell state dis-
tribution shifts across clones suggesting that genetic heterogeneity 
also increases transcriptomic heterogeneity (per sample Fisher’s 
exact test P < 0.05; Fig. 6b). Collectively, these results suggest that 
large-scale copy number alterations occurring early in tumor devel-
opment affect the observed epigenetic and transcriptomic diversity.
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Renalysis of bulk RRBS IDH WT (Klughammer et al.5)
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Extrachromosomal DNA (ecDNA) elements in IDH WT glio-
mas amplify oncogenes and enhancer elements to drive genetic 
heterogeneity46–49. We hypothesized that the impact of ecDNA on 
genomic heterogeneity extends to fueling epigenetic and transcrip-
tomic diversity48,50. We detected ecDNAs using WGS and validated 

their presence by FISH (Fig. 6c and Extended Data Fig. 10d,e). EGFR 
ecDNAs, like chromosomal arm-level events (for example, chromo-
some 7 amplification in SM001) distinguished subsets of tumor 
cells (for example, EGFR ecDNA in SM012) (Fig. 6b and Extended 
Data Fig. 10d,e). We classified both scDNAme and RNA profiles as 
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ecDNA+ or ecDNA− based on EGFR copy number level (Extended 
Data Fig. 10f). EcDNA+ cells had increased genome-wide DNAme 
in 3 of 4 cases (Wilcoxon rank-sum test P < 0.05; Extended Data 
Fig. 10g) and greater transcriptional diversity using gene count 
signatures compared with ecDNA− cells (Wilcoxon rank-sum test 
P < 0.05; Extended Data Fig. 10h and Methods)51. The tumor with 
the highest number of genetic subclones and DNAme disorder 
(SM012) contained an EGFR-amplifying ecDNA assigned to sub-
clones 3 and 4, which were marked by differential expression of a 
receptor tyrosine kinase gene signature. ecDNA− subclone 2 was 
most closely associated with hypoxia gene expression (Wilcoxon 
rank-sum test P <2.2 × 10−16; Fig. 6d), providing an example of how 
genetic heterogeneity may shape epigenetic and transcriptional 
reprogramming. In summary, our evolutionary analyses show that 
intratumoral genetic heterogeneity influences but does not deter-
mine epigenetic or transcriptomic cell states.

External pressures shape adaptive DNAme changes. We next 
asked whether epigenetic diversity accelerates tumor evolution by 
promoting cell survival in resource-deprived tumor environments 
(for example, hypoxia or therapeutic exposures). To address this 
question and extend the generalizability of our findings, we ana-
lyzed DNAme profiles from large-scale microarray-based bulk 
glioma studies2,4,52. We inferred a microarray metric from the 
scDNAme data that quantified the DNAme disorder-susceptible 
gene regions (Fig. 7a). We reasoned that regions prone to DNAme 
changes would reflect this stochasticity in bulk data by assuming 
intermediate DNAme values (Fig. 7a). This bulk DNAme disorder  
metric approximated scDNAme disorder averages across our 
cohort (Spearman correlation R = 0.65 P = 0.02). Applying this 
DNAme disorder metric to The Cancer Genome Atlas (TCGA) 
data identified differences across TCGA-defined subtypes2, with 
IDH WT tumors displaying the highest levels (Kruskal–Wallis 
P < 2.2 × 10−16; Fig. 7b). Integrating matching DNAme and 
RNA-seq samples from 568 TCGA samples showed that high 
bulk DNAme disorder samples showed increased transcriptional 
activity of oxidative stress response genes, corroborating our ear-
lier positive associations between epigenetic instability and stress 
response regulation (Spearman correlation R = 0.47, P < 2.2 × 10−16, 
n = 516 IDH mutant initial tumors, R = 0.31, P = 0.03, n = 52, IDH 
WT initial tumors).

We next applied the bulk DNAme disorder metric to 119 
image-guided stereotactic biopsies taken from spatially distinct 
regions across IDH WT (n = 57 biopsies, n = 6 patients) and IDH 
mutant (n = 62 biopsies, n = 8 patients) tumors52. This quantified the 
physical distance between each sample and the tumor’s center, based 
on specific radiographic features (for example, magnetic resonance 
imaging contrast-enhanced region). DNAme disorder was increased 
closer to the tumor’s center across IDH WT tumors while adjust-
ing for patient (multivariable linear regression P = 0.02; Fig. 7c),  
a region frequently characterized by hypoxia. The link between 
radiographic features and epigenetic shifts supports the association 
between cellular fitness and increased epigenetic plasticity. We did 
not observe a consistent relationship between tumor location and 
bulk DNAme disorder in IDH mutant tumors (multivariable linear 
regression P = 0.31; Fig. 7d) where hypoxia is less prevalent.

The environmental pressures that tumors face may vary over 
time. We analyzed initial and recurrent tumor samples from the 
Glioma Longitudinal AnalySiS (GLASS) consortium for which 
DNA sequencing and DNAme data were available (n = 102 tumors, 
n = 51 patients) to relate DNAme instability to genetic alterations. 
We cataloged individual CpG sites where copy number or DNAme 
changed between the initial tumor and its matched recurrence. 
Overall, we observed that DNAme changes were mostly decreases 
in DNAme consistent with previous findings7,53 and that DNAme 
changes mainly occurred in regions that were copy number-stable 

(Fig. 7e). We then tested for DNAme changes after treatment while 
accounting for differences in cellular composition of the tumor 
microenvironment (Methods). We discovered that regions with 
consistently altered DNAme independent of changes in micro-
environment cell type distribution were enriched for the binding 
site motifs of transcription factors that regulate the cellular stress 
response, particularly hypoxia (for example, HIF1A; Fig. 7f). We 
also observed the enrichment for differential binding site DNAme 
among transcription factors that differed between stem-like and 
differentiated-like states in our single-cell data (for example, SP1 
and TFAP2A; Figs. 3f and 7f). These observations support our 
single-cell findings that regions with the greatest DNAme disor-
der are involved with processes regulating cellular differentiation 
and stress signaling. In summary, we find that stochastic DNAme  
alterations can provide the variability necessary to enable or  
stabilize transition to adaptive epigenetic phenotypes that are 
responsive to cellular stress (Fig. 7g).

Discussion
In this study, we integrated multimodal scDNAme and transcrip-
tomic profiles along with bulk profiles to interrogate the association 
between epigenetic heterogeneity, genetic alterations, cellular states 
and the glioma stress response. We found that early genetic altera-
tions were associated with DNAme disorder, whose accumulation 
throughout the genome was linked with altered cellular states and 
response to environmental pressures. Elevated DNAme disorder  
highlights a mechanism to overcome cell stress, increase cellular  
plasticity and ultimately enhance treatment resistance. Taken 
together, epigenetic intratumoral heterogeneity provides a plastic 
intermediate between genetic subclones and adaptive phenotypic 
cell states.

Random errors in the DNAme replication machinery lead to 
DNAme disorder and increased intratumoral epigenetic diversity5,29,54.  
We found that genetic and environmental stimuli further exacer-
bate epigenetic variability and hypothesize a convergence for both 
stimuli on altered cellular metabolism. Deregulated metabolism is a 
hallmark of both IDH mutant, which produce the oncometabolite 
2-hydroxyglutarate that interferes with DNA demethylation2,27,55–57, 
and IDH WT glioma where hypoxia is common. Additional genetic 
stimuli include broad chromosomal alterations that were positively 
associated with DNAme disorder. Through cross-platform evolu-
tionary comparisons, we found that chromosomal alterations are 
early events possibly leading to the observed nongenetic diversity 
by generating metabolic disruption via active oxygen species31, 
thereby increasing the likelihood of aberrant DNAme. Our study 
shows that environmental stimuli, such as hypoxia and irradiation, 
increase DNAme disorder extending previous studies reporting the 
repressed enzymatic activity of DNAme regulators after hypoxia58. 
Tumor hypoxia is common across many cancers and could more 
broadly shape the phenotype of cells resistant to therapy through 
DNAme disorder59. Collectively, increased genomic instability and 
resource-poor microenvironments represent stressors that may 
explain the greater cell state plasticity in IDH WT relative to IDH 
mutant gliomas.

In a non-tumor setting, a cell’s epigenome reflects the tissue of 
origin and serves to stabilize cell state-specific gene expression60. 
A disrupted epigenetic landscape eroded by DNAme disorder may 
facilitate adaptive cell state transitions or increase cellular plasticity9. 
Glioma cell states fall along axes of differentiation and proliferating 
potential10–12,15. In accordance with previous reports, we observed 
pan-glioma malignant cell states that were found within each tumor 
and in vitro models. Our single-cell epigenetic profiles revealed that 
cell state-defining transcription factor activity may be perturbed  
by DNAme disorder. Thus, diverse DNAme marks help to sustain 
multiple cell states that each confer their own context-dependent 
fitness advantages and together accelerate disease progression.
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Intratumoral heterogeneity in glioma reflects subclonal com-
petition driven by limited nutrient access. While single-cell 
transcriptome-based phenotype studies have investigated glioma 
transcriptomic heterogeneity10–12,14,15, we have only limited knowl-
edge on the degree of epigenetic variability. The intratumoral epi-
genetic variation defined in this study provides a link between 
subclonal competition and phenotypic state changes by enabling 
diverse responses to selective pressures, such as hypoxia and treat-
ment. Future studies are needed to fully elucidate the mechanisms 
by which increased DNAme disorder provides competitive advan-
tages under stress. While we identified shared cell states that were 
present across different modalities, future studies employing simul-
taneous epigenome/transcriptome characterization will refine these 
cellular state classifications and identify additional determinants 
that shape glioma cell identity. A better understanding of thera-
peutically vulnerable cell states in glioma will foster development 
of more effective therapeutic interventions. In summary, single-cell 
epigenetic profiles show that diverse DNAme marks encode cellular 
states in glioma, permit cell state plasticity and reflect environmen-
tal stress exposures.
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Methods
Experimental methods. Description of human tumor specimens. Human glioma 
resection specimens were obtained with informed consent from the University of 
Connecticut Health Center and St. Michael’s Hospital. All tissue donations were 
approved by the institutional review board of the Jackson Laboratory and clinical 
institutions involved. This work was performed with ethics board approval (no. 
2018-NHSR-018) and in accordance with the Declaration of Helsinki principles. 
Patients were not compensated for their participation in this research study. 
Initial pathological diagnosis was confirmed with tumor DNAme classification 
according to the MolecularNeuropathology tool61. The clinical characteristics of 
this population are provided in Supplementary Table 1.

Sample preparation and sorting for the single-cell experiments. Tumor specimens 
were collected directly from the operating room and immediately placed 
into MACS tissue storage solution at 4 °C (catalog no. 130-100-008; Miltenyi 
Biotec). Tumor specimens from the same spatial region were then minced and 
partitioned into single-cell and bulk fractions (Fig. 1a). Any remaining tumor 
tissue was deposited into freezing media consisting of 90% heat-inactivated fetal 
bovine serum FBS (Invitrogen) and 10% dimethyl sulfoxide (Sigma-Aldrich), 
and gradually frozen in a freezing container (Mr. Frosty; Corning) over 24 h 
before being stored in liquid nitrogen for future experiments (that is, FISH). 
Bulk tissue specimens were immediately flash-frozen for subsequent DNA and 
RNA extraction. The specimen fraction for single-cell analyses was further 
mechanically and enzymatically dissociated using the Brain Tumor Dissociation 
Kit (P) according to the manufacturer’s protocol (catalog no. 130-095-942; 
Miltenyi Biotec)11,14,15.

Single-cell suspensions were blocked with human BD Fc Block (BD 
Biosciences) for 5 min on ice before antibody staining and labeled via incubation 
with 1:100 dilution of Alexa Fluor 488-conjugated anti-CD45 antibody (catalog no. 
304017; BioLegend) and 1:100 dilution of PECy7-conjugated anti-CD31 antibody 
(catalog no. 303117; BioLegend) for 30 min at 4 °C. Cells were washed with Hank’s 
buffered saline solution (HBSS) and resuspended in 2 mM of EDTA/2% BSA/
PBS buffer containing 2 µg ml−1 of propidium iodide (PI) (catalog no. 556364; BD 
Biosciences) and 1 µM of calcein violet (Invitrogen) for 20 min at 4 °C. FACS was 
performed using a BD FACSAria Fusion instrument with a 130-µm nozzle and 
using the lowest event rate. Single-cell mode was selected to further ensure the 
stringency of sorting. Fluorescence compensation and FACS data visualization 
was performed using FlowJo v.10.3 (https://www.flowjo.com/). For the generation 
of 10x sequencing libraries, 50,000–150,000 PI−, calcein+ viable single cells were 
collected in 20% FBS/HBSS buffer. CD45+ cells were limited to no more than 20% 
of the total viable sort to enrich for tumor cells (Extended Data Fig. 2a). For the 
generation of scDNAme libraries, we sorted viable (PI− and calcein+), non-immune 
(CD45−), and non-endothelial (CD31−) cells into 96-well plates that were 
preloaded with 5 µl of 1× Tris-EDTA buffer (Extended Data Fig. 2a). Once cells 
had been sorted, the 96-well plates were either immediately processed through the 
scDNAme protocol or frozen and stored at −80 °C.

scRRBS library preparation. scDNAme profiling was performed using a modified 
version of a previous scRRBS protocol25,26. The scDNAme experiments were 
performed with sorted viable, non-immune, non-endothelial (PI−, calcein+, CD45−, 
CD31−) cells in a 96-well plate containing 5 µl of preloaded Tris-EDTA buffer with 
an empty well control. For 9 out of 11 tumors, the protocol was also applied to a 
small control population of 50 cells (PI−, calcein+, CD45−, CD31−). Sorted 96-well 
plates were frozen at −80 °C until processing when cells were lysed with 0.2 µl of 
1 M of KCl (Sigma-Aldrich), 0.2 µl of 10% Triton X-100 (Sigma-Aldrich), 0.3 µl 
of 20 mg ml−1 of protease (QIAGEN) and nuclease-free water in a total volume of 
6 µl for 3 h at 50 °C. The protease was then heat-inactivated at 75 °C for 15 min. 
The DNA was incubated with 50 units of MspI (New England Biolabs) and TaqI 
(New England Biolabs) with CutSmart Buffer (New England Biolabs) for 3 h at 
37 °C; 60 fg of unmethylated bacteriophage lambda DNA (Promega Corporation) 
was added to each well to serve as a control for bisulfite conversion efficiency 
assessment. The solution was heated to 80 °C for 20 min to heat-inactivate the 
restriction enzymes and placed on ice. Five units of Klenow fragment (3′→ 5′ 
exo-; New England Biolabs), CutSmart Buffer and end-repair deoxynucleoside 
triphosphate (dNTP) mix (40 µM of dATP, 4 µM of dGTP and 4 µM of dCTP; New 
England Biolabs) totaling 2 µl per reaction were added to perform end-repair and 
dA-tailing. Then, 1:250× diluted NEXTflex methylated adapters (Bioo Scientific) 
were added to each quadrant of the 96-well plate (n = 24 unique adapters) with 
a ligation mixture of 40 Weiss U T4 ligase (New England Biolabs), 1 mM of ATP 
(Thermo Fisher Scientific) and nuclease-free water to a final volume of 4 µl per 
reaction. TruSeq methylated adapters (Illumina) were also used in one sample 
(SM001) using the same protocol. The ligation reaction proceeded at 16 °C 
for 30 min followed by incubation at 4 °C for at least 8 h. The ligation reaction 
was stopped by heat-inactivation at 65 °C for 20 min. After adapter ligation, 
24 individual cells with unique ligated adapters were pooled from each plate 
quadrant for the protocol’s remainder. Excess adapter was removed using a 1:1 
volumetric ratio of AMPure beads (Beckman Coulter). Bisulfite conversion was 
performed using the EZ DNA methylation kit (Zymo Research) according to the 
manufacturer’s instructions except with one-half volumes due to reduced DNA 

input. The solution was incubated at 98 °C for 8 min, 64 °C for 3.5 h and held at 
4 °C once the reaction was complete. Then, 10 ng of transfer RNA (Roche) was 
added before column elution to serve as a protective carrier. PCR enrichment was 
performed using the PfuTurbo Cx HotStart (Agilent Technologies), PfuTurbo 
Cx HotStart Buffer (Agilent Technologies), primer mix (Bioo Scientific), dNTP 
mix (Promega Corporation) and nuclease-free water under the following 
conditions: 95 °C for 2 min, 32 cycles at 95 °C for 20 s, 60 °C for 30 s and 72 °C 
for 60 s. The PCR reaction was terminated by incubating at 72 °C for 5 min. The 
libraries were purified in a 1:1 volumetric ratio of AMPure beads. Pippin size 
selection was performed between 200 and 1,000 base pairs (bp) (Sage Science) 
and quantified by quantitative PCR (qPCR) (Kapa Biosystems). scRRBS libraries 
were paired-end-sequenced alongside bulk whole-genome libraries on an Illumina 
HiSeq 4000 using 1% PhiX spike-in and 75-bp reads.

scRNA library preparation. Sorted cells were washed and resuspended in 0.04% 
BSA/PBS buffer. Cells were counted on a Countess 2 automated cell counter and 
were loaded on a Chromium chip with a target cell recovery of 6,000 cells per lane. 
Sequencing libraries were performed using the single-cell 3′ messenger RNA kit 
according to the manufacturer’s protocol (10x Genomics). Complementary DNA 
and library quality were examined on a 4200 TapeStation (Agilent Technologies) 
and quantified by qPCR (Kapa Biosystems). Illumina sequencing (NovaSeq) was 
performed using a paired-end 100-bp protocol. Libraries were sequenced to a 
median depth of 50,000 unique reads per cell.

WGS of tumors and matched normal blood. Genomic DNA was extracted from 
the same tumor region as the single-cell analyses using the QIAGEN AllPrep kit 
and matched to normal blood using the DNeasy kit (QIAGEN). Briefly, 400 ng 
of DNA was sheared to 400 bp using an LE220 focused-ultrasonicator (Covaris) 
and size-selected using Solid Phase Reversible Immobilization beads (Beckman 
Coulter). The fragments were treated with end-repair A-tailing and ligation of 
unique adapters (Illumina) using the KAPA mRNA HyperPrep Kit (Roche). This 
was followed by five cycles of PCR amplification. DNA sequencing was performed 
using a paired-end 75-bp protocol according to the manufacturer’s instructions 
(Illumina HiSeq 4000). Tumor samples were sequenced to an average depth of 44×; 
tumor-matched normal blood was sequenced to an average depth of 30×.

Bulk Illumina EPIC DNAme microarrays. A total of 250 ng of genomic tumor 
DNA was subjected to bisulfite conversion using the EZ DNA methylation 
kit (Zymo Research) and genome-wide DNAme was assessed by the Infinium 
MethylationEPIC Kit according to the manufacturer’s protocol (Illumina).

Bulk RNA-seq. Bulk tumor RNA was extracted from samples with sufficient tissue 
using the AllPrep kit. Samples with RNA integrity number values > 5 as assessed by 
TapeStation were prepared with the KAPA mRNA HyperPrep Kit. Libraries were 
sequenced using a paired-end 150-bp protocol on a NovaSeq system to 50 million 
reads according to the manufacturer’s protocol (Illumina).

FISH analysis. Tissue slides were prepared by tumor touch prep method46. 
Positively charged glass slides were pressed against the surface of thawed frozen 
tissues. The slides were then immediately fixed by cold Carnoy’s fixative (3:1 
methanol:glacial acetic acid v/v) for 30 min and then air-dried. Slides were 
denatured in hybridization buffer (Empire Genomics) mixed with EGFR-Chr7 
probe (EGFR-CHR07-20-ORGR; Empire Genomics) at 75 °C for 5 min and 
then incubated at 37 °C overnight. The posthybridization wash was with 0.4× 
saline-sodium citrate at 75 °C for 3 min followed by a second wash with 2× 
saline-sodium citrate/0.05% Tween 20 for 1 min. The slides were then briefly 
rinsed with water and air-dried. The VECTASHIELD mounting medium with 
4′,6-diamidino-2-phenylindole (Vector Laboratories) was applied and the coverslip 
was mounted onto a glass slide. Tissue images were scanned under a Leica STED 
3X/DLS confocal microscope with 100× magnification.

Glioma sphere-forming cell lines and in vitro perturbations. Patient-derived IDH 
WT spheroids (HF2354 and HF3016) were cultured in neurosphere medium 
(NMGF): 500 ml of DMEM/F-12 medium (catalog no. 11330032; Gibco) 
supplemented with N-2 (catalog no. 17502-048; Gibco), 250 mg of BSA (catalog 
no. A4919; Sigma-Aldrich), 12.5 mg of gentamicin reagent (catalog no. 15710-
064; Gibco), 2.5 ml of antibiotic/antimycotic (Invitrogen), 20 ng ml−1 of EGF 
(catalog no. AF-100-15; PeproTech) and 20 ng ml−1 of bFGF (catalog no. 100-
18B; PeproTech). Previous comprehensive characterization of patient tumor and 
matched patient-derived spheroids demonstrated faithful propagation of genomic 
and transcriptomic profiles to the cell lines46.

To induce hypoxia, glioma cells were cultured in hypoxia chambers (Thermo 
Fisher Scientific) under atmospheric normoxic (21% O2) and hypoxic (2 and 
1% O2) conditions. Cells assayed at the 3-d time point were cultured under the 
three different oxygen conditions (n = 4 per group). The 9-d time point data were 
restricted to 21 and 1% (n = 6 per group) after observing oxygen concentration 
dosage effects at 3-d (Extended Data Fig. 9a,b). The 3 and 9-d time points were 
selected due to the 2–3-d doubling time of these cell lines. Irradiation was delivered 
using the Gammacell 1000A Blood Irradiator (Atomic Energy of Canada Limited) 
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at a daily dose of 2.5 Gy for 4 consecutive days for a total of 10 Gy followed by a 
recovery period of 5 d62. Irradiated cells were collected at the 9-d time point (n = 6 
per group). DNA and RNA for all conditions were isolated using the AllPrep DNA/
RNA Mini Kit (QIAGEN).

Patient-derived spheroid candidate gene expression. Real-time PCR was performed 
with primers specific for candidate cell state (SOX2, POU5F1), stress response 
(JUN) and hypoxia marker genes (EPAS1 (HIF2A) and VEGFA) at the 3-d time 
point. Relative gene expression was normalized to the housekeeping genes ACTB 
and B2M. All primers were purchased from Integrated DNA Technologies. Primer 
sequences are provided in Supplementary Table 5.

Cell line RRBS. Sequencing library preparation was performed using the Premium 
RRBS Kit (catalog no. C02030033; Diagenode) according to the manufacturer’s 
protocol. Libraries were sequenced on a NovaSeq 6000 using a paired-end 2 × 100 
strategy for all replicates (n = 60). The mean sequencing depth was 38 million reads 
per sample.

Patient-derived cell line scRNA-seq. For each cell line and time point, both a 
perturbed (that is, hypoxia and irradiated) and a control replicate were dissociated 
into single cells for single-cell gene expression profiling. Briefly, cells were collected 
at the 3 and 9-d time points for the hypoxia experiments and the 9-d time point for 
the irradiation experiments. To minimize batch effects when comparing perturbed 
and control conditions, cells were labeled with oligonucleotide-tagged antibodies, 
flow sorted to enrich for viable cells and multiplexed on the same 10x Chromium 
lane (10x Genomics)63. Libraries were sequenced using the single-cell 3′ mRNA kit 
in the same manner described for the patient tumor specimens.

Analytical methods. Single-cell and cell line DNAme processing. Raw sequencing 
reads were trimmed to remove adapters and low-quality bases using TrimGalore 
v.0.4.0 with the --rrbs and --paired parameters (https://github.com/FelixKrueger/
TrimGalore). The trimmed reads were then aligned to the GRCh37 (hg19) 
genome using Bismark v.0.19.1 with the parameters -N 1 --bowtie2 --score_min 
L,0,-0.4 (ref. 64). For single-cell data, PCR duplicates were removed with the 
deduplicate_bismark command. Bisulfite conversion efficiency was determined 
using the spike-in unmethylated lambda DNA. For single-cell data, cells with fewer 
than 40,000 unique CpGs detected and bisulfite conversion rates below 95% were 
removed from the analysis. A total of 914 single cells were retained for downstream 
analysis (n = 914 out of 1,076 total cells sequenced) with a mean of 145,000 CpGs 
per cell and mean bisulfite conversion rate of 98.4% (Supplementary Table 6). All 
60 cell line RRBS samples were retained for downstream analysis, with a mean of 
10,228,198 unique CpGs per sample and a mean bisulfite conversion rate of 98.9% 
(Supplementary Table 7).

Unsupervised clustering of scRRBS data. Unsupervised clustering of the  
DNAme data was performed using pairwise comparisons of individual  
CpGs across all cell–cell comparisons (PDclust, v.0.1.0)65. Briefly, this method 
performs pairwise comparisons of single-CpG methylation measurements  
to create a pairwise dissimilarity value that reflects the average absolute  
difference in methylation values at CpGs covered in any two cells. The pairwise 
dissimilarity values were used as input features for the MDS analysis for which 
visualization of cells in close proximity reflected greater similarity than cells 
further apart (Fig. 1b).

DNAme disorder as a measure of epigenome instability. DNAme disorder was 
determined by identifying DNAme concordance of nearby CpGs on a single 
sequencing read for bulk and scDNAme data18,29,54. Briefly, for a sequencing read 
to be considered for this analysis, it required a minimum of four CpGs located 
on the same sequencing read. Sequencing reads containing at least four CpGs, 
referred to as ‘epialleles’, were extracted from aligned BAM files using SAMtools 
v.1.9 (ref. 66) for downstream analysis. An epiallele was considered discordant if any 
of the CpGs on that sequencing read had different methylation states (for example, 
three methylated CpGs and an unmethylated CpG). The DNAme disorder metric 
reflects the sum of discordant epialleles divided by the total number of epialleles 
considered for analysis (that is, the proportion of discordant reads)18,29,54. The 
DNAme disorder metric can be calculated across the entire genome (that is, 
DNAme disorder) or restricted to specific genomic regions where the metric 
considers only the epialleles overlapping that particular genomic context. A 
linear regression model was used to assess the impact of the total number of 
epialleles considered for analysis on the DNAme disorder. The DNAme disorder 
metric was very weakly associated with epiallele count in that an additional 
10,000 epialleles were associated with an 0.001 increase in the DNAme disorder 
metric. For the analyses associating DNAme disorder with metrics derived from 
bulk WGS data, the sample-level DNAme disorder was calculated as the median 
of the scDNAme disorder values. For the analyses of the patient-derived cell 
line RRBS data, DNAme disorder was calculated separately for each CpG by 
determining the proportion of discordant reads overlapping the given CpG. CpGs 
with a sequencing depth less than 20× or at least 100 times the 95th percentile of 
sequencing depth were excluded from analysis.

DNAme and DNAme disorder over genomic annotations. To determine 
region-specific DNAme or DNAme disorder, measured CpGs or epialleles were 
intersected with the genomic coordinates of interest before methylation value or 
DNAme disorder calculation, respectively. For the analyses of patient-derived cell 
line RRBS data, region-specific DNAme disorder was calculated as the weighted 
average of per-CpG DNAme disorder values, with weights proportional to 
sequencing depth. All coordinates were mapped against the hg19 human genome 
assembly. Regions of interest considered for the analyses included CGIs, adjacent 
CGI shores, promoter, gene body, intergenic, Alu repeat, normal cell-specific 
CTCF and EZH2 binding sites (ENCODE: normal human astrocyte and H1 
embryonic stem cells), DNase I hypersensitivity regions, TFBS motifs, replication 
timing domains and 5 and 10 kilobase (kb) tiled regions. CGI shores were defined 
as ±2 kb from the CGI. Promoters were defined as 1 kb upstream and 500 bp 
downstream of FANTOM5 (ref. 67). Transcription start sites (TSS) were mapped 
to Ensembl release 96 genes. If multiple TSS mapped to a given gene, the TSS with 
the lowest genomic coordinate was selected. Gene body annotations were obtained 
from the Ensembl Genome Browser, release 9668. Intergenic regions were annotated 
by selecting regions not overlapping Ensembl gene body coordinates. DNase 
I hypersensitivity region annotations were obtained from the UCSC Genome 
Browser database, 2019 update69. TFBS motifs were obtained from the JASPAR 
2020 Core Vertebrate database70 of nonredundant transcription factor binding 
motifs. Each binding site was assigned a score of 0–1,000, which corresponded to 
the P value for the relative position weight matrix score of a TFBS motif prediction. 
For a given transcription factor, all identified target binding site coordinates were 
aggregated; binding sites were excluded if they had a relative score of less than 
400, corresponding to P > 0.0001, or if any binding site lacked a CpG dinucleotide. 
TFBS motif DNAme disorder analyses required that a given epiallele included at 
least one CpG overlapping the TFBS motif; subsequently, epialleles considered for 
analysis included both CpGs within and adjacent to the motif. Analysis of DNAme 
disorder grouping CpGs by whether they lay at or adjacent to motifs revealed 
consistent DNAme disorder across epialleles overlapping TFBS motifs. Replication 
timing of genes was retrieved from MutSigCV v.1.071 and gene-specific annotations 
for the replication timing domains were generated by binning gene coordinates 
into quartiles based on the replication timing score. Methylation values were also 
calculated for nonoverlapping windows of 5 or 10 kb. The ranks of high DNAme 
disorder levels were determined with the ROSE software (https://bitbucket.org/
young_computation/rose) for both gene-level and TFBS.

SCNA estimation from scDNAme data. To provide evidence for SCNAs in 
scDNAme sequencing data, the Gingko algorithm72 was applied to single cells that 
passed the scRRBS quality control filters mentioned above. Briefly, this method 
bins mapped reads by chromosomal location, performs Lowess normalization to 
correct for GC biases, adjusts for potential amplification artifacts and segments the 
genome to determine chromosomal regions with consistent copy number states. 
In this study, the genome for each sample was divided into 2,597 variable-length 
bins with a median length of 1 megabase. Segmentation was performed using 
independent normalized read counts and the parameter mask bad bins (that is, 
bins with consistent pileups) was enabled. Cells were considered non-tumor if 
<1% of the genome had a copy number state that was not 2. Copy number plots 
were generated using the R package gplots v.3.0.1.1. Hierarchical clustering and 
annotation of single-cell SCNA profiles was performed using the dendextend 
v.1.13.4. R package73.

scRNA processing and analysis. The Cell Ranger pipeline v.3.0.2 was used to convert 
Illumina base call files to FASTQ files and align FASTQs to the hg19 10x reference 
genome v.1.2.0. Preprocessing was performed using the Scanpy package v.1.3.7 
(ref. 74). The gene expression profiles of each cell at the 1,500 most highly variable 
genes (as measured by dispersion75) were used for neighborhood graph generation 
(using 33 nearest neighbors) and dimensionality reduction with uniform manifold 
approximation and projection (UMAP)76. Clustering was performed on this 
neighborhood graph using the Leiden community detection algorithm77. The 
neighborhood graph was batch-corrected using the batch correction software 
BBKNN v.1.2.078. These defined clusters were then labeled with particular cell 
states based on marker gene expression and previously described cell states10,11,14. 
A similar analytical framework was also applied to each of the two patient-derived 
spheroid scRNA-seq datasets, each using a different number of most variable 
genes and nearest neighbors. Cell state classification of malignant cells was also 
performed using previously developed classifiers for both IDH WT11 and IDH 
mutant tumors15. The Seurat R package, v.3.1.1, was used for downstream analyses 
and visualizations79. Inference of gene regulatory networks was performed 
using SCENIC, v.1.1.2-2, for a random set of 5,000 cells per analysis, with only 
9-d stress cells presented in Extended Data Fig. 8d–f37. SCNA estimation from 
scRNA-seq data was performed using InferCNV v.1.6.0 (refs. 11,14,15). Briefly, 
the InferCNV method provides evidence for large-scale SCNAs by comparing 
averaged gene expression intensity values with non-tumor cells (based on marker 
gene expression) from the same specimen. Subclusters of cells were partitioned 
into clones on the basis of shared copy number patterns (https://github.com/
broadinstitute/inferCNV). Single-cell gene set activity was determined using 
AUCell v.1.12.0 (ref. 37). scRNA diversity comparisons using gene count signatures 
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were performed using the R package CytoTRACE v.0.1.0 across cells from the same 
tumor clone51.

Joint scRNA and scDNAme integration. scRNA and DNAme malignant cell profiles 
were integrated within the same specimen by jointly clustering gene expression 
with gene-level methylation features using the R package liger v.0.4.2 (ref. 38).

Analysis of publicly available brain tumor DNAme data. Data reanalysis of 
longitudinal glioma resources was accessed for Klughammer et al.5 (http://www.
medical-epigenomics.org/papers/GBMatch/) and GLASS (http://synapse.org/
glass)4. Magnetic resonance imaging-guided biopsies taken from spatially distinct 
regions and subjected to bulk DNAme Illumina methylation microarray collected 
by our group can be accessed at EGAS00001005434 (ref. 52). DNAme microarrays 
(HumanMethylation450 BeadChip) were retrieved from the TCGA initial 
glioma samples2. All Illumina methylation microarrays were processed using 
the R package minfi v.1.30.0. The recurrent DNAme changes between the initial 
and recurrent tumors were determined by fitting a linear mixed effect model (R 
nlme package v.3.1-140) to each individual CpG modeled as a logit-transformed 
M-value with independent variables of time point, subtype, cancer cell proportion, 
immune proportion and patient included as the random effect. The cancer and 
immune cell proportions in the GLASS bulk Illumina methylation microarray data 
were determined using the glioma signature in the R package MethylCIBERSORT 
v.0.2.0 (ref. 80).

Gene and genomic region enrichment analyses. Enrichment of genes were 
performed using the R package topGO v.2.42.0. Enrichment of genomic regions 
was determined using the Locus Overlap Analysis (LOLA) v.1.14.0 R package81. 
LOLA enrichment analyses used all features considered for analysis as the 
background sets.

Variant detection and copy number calling. Variant detection and bulk copy number 
determination was performed in accordance with the Genome Analysis Toolkit 
(GATK) best practices using GATK v.4.1.0.0 (Mutect2). Bulk tissue sequencing 
computational pipelines were developed using snakemake v.5.2.2 (ref. 82).

Mutational signature identification. Mutational signatures were identified in 
bulk WGS samples using the MutationalPatterns R package v.1.10.0 (ref. 83). The 
trinucleotide context of single base substitutions was extracted for each sample 
to construct a mutational profile. For each mutational profile, the contribution of 
mutational signatures from the Catalogue of Somatic Mutations in Cancer v3 was 
quantified. Known signatures were ranked by order of relative contribution to the 
sample mutational profile; for visualization, the top five signatures per sample were 
listed, with the remaining signatures collapsed into an ‘Other’ category.

Phylogenetic reconstruction bulk WGS clonality. To reconstruct the evolutionary 
history and subclonal composition of tumors, PhyloWGS v.1.0-rc2 (ref. 84) 
was applied to the bulk WGS samples. PhyloWGS incorporates SCNAs with 
simple somatic mutations in inferred phylogenies by converting SCNAs into 
pseudo-simple somatic mutations before subclonal reconstruction. For input, 
PhyloWGS requires VCF format variant calls, SCNA segments and estimates 
of tumor purity, which were generated using Mutect2 v.4.1.0.0 (ref. 71), TITAN 
v.1.19.1 (ref. 85) and Sequenza v.2.1.2 (ref. 86), respectively. If a tumor contained 
more than 5,000 variants, input variants were subsampled to 5,000, ensuring that 
all variants overlapping previously identified, significantly mutated genes were 
included2,4. For each PhyloWGS run, multiple Markov chain Monte Carlo chains 
were initiated with differing start values; the optimum solution was selected based 
on negative normalized log-likelihood. Cancer cell fractions were calculated for 
each tumor subpopulation as the cellular prevalence for a given subpopulation 
divided by the maximum cellular prevalence for that tumor, which corresponds 
to the estimated tumor purity. Events were defined as clonal if they had a cancer 
cell fraction of 1 or subclonal otherwise. SCNA subpopulation assignments and 
cellular prevalence estimates derived from PhyloWGS were further informed by 
scRNA-seq and scRRBS-derived copy number profiles.

Bulk RNA-seq processing. FASTQ files were preprocessed with fastp v.0.20.0 to 
assess quality control and were aligned to the hg19 genome using kallisto v.0.46.0 
with default parameters87. The bulk RNA Verhaak classification and simplicity 
scores were determined using the ssGSEA.GBM.classification v.1.0 R package8. 
Single-sample gene set enrichment analysis for particular pathways was performed 
using the GVSA v.1.32.0 R package88.

Detection of extrachromosomal DNA. Amplicon architect (the version used in 
original paper89) was used to detect extrachromosomal DNA in tumor WGS 
data. Briefly, this method characterizes the architecture of amplified regions 
that are larger than 10 kb and have more than 4 copies greater than the median 
sample ploidy.

DNAme-based tumor classification. Probabilistic estimates of tumor classification 
were defined by the MolecularNeuropathology classification tool v.11b4 (ref. 61).

Statistics and reproducibility. All data analyses were conducted in R v.3.6.1. 
Statistical analyses are described in the respective Methods subsections and are 
briefly described in the figure legends. P values were false discovery rate-corrected 
for multiple hypotheses testing where indicated. For box plot representations, 
data points located outside the whisker plots are not shown to aid readability 
but are included in the statistical analyses. No statistical methods were used to 
predetermine study sample size. Data subsets are explicitly mentioned when 
used. The experiments were not randomized. The investigators were not blinded 
to allocation during the experiments and outcome assessment. P < 0.05 was 
considered statistically significant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All de-identified, nonprotected access somatic variant calls, single-cell gene 
expression profiles, regional scDNAme data and scDNAme disorder data are 
accessible via Synapse (https://synapse.org/singlecellglioma). Raw bulk and 
single-cell sequencing data and methylation microarray data are available through 
the European Genome-phenome Archive under accession no. EGAS00001005300. 
The GRCh37 (hg19) reference genome was obtained from GATK (https://gatk.
broadinstitute.org/).

Code availability
Major analysis scripts are available on GitHub (https://github.com/
TheJacksonLaboratory/singlecellglioma-verhaaklab) and Zenodo (https://doi.
org/10.5281/zenodo.4967364).
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Extended Data Fig. 1 | Integrated molecular profiles of patient samples. Each patient is in a single column with data presented to indicate clinical features 
(top), followed by genetic alterations defined from bulk whole genome sequencing data, bulk RNA sequencing based subtype classification probabilities 
(Wang et al., n = 8 available), single-cell RNA tumor cellular state proportions, bulk DNAme microarray subtype classification probabilities (Capper et al.), 
and boxplots of single-cell DNAme disorder with samples colored by clinical timepoint. Each box spans the 25th and 75th percentile, center lines indicate 
the median, and the whiskers represent the absolute range (minima/maxima), excluding outliers.
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Extended Data Fig. 2 | Sample pre-processing and metrics related to single-cell DNAme data assessment. a, Representative fluorescence activated 
cell sorting (FACS) data and strategy for viable cell enrichment for both single-cell protocols, and tumor cell enrichment in scRRBS. b, The number of 
unique CpGs detected per single cell, with the red line indicating the threshold (minimum 40,000 unique CpGs) for inclusion in the dataset presented 
herein. c, Representative distribution of single locus DNAme estimates for a single cell. DNAme percentage of 0 represents an unmethylated locus, 
while a percentage of 100 represents a methylated locus. d, The CpG count per genomic features across tumor single cells. e, Histogram representing 
the cell-to-cell CpG overlap of all single cells in this dataset. f, Upset plot of patient-level unique gene promoter overlap. The top bar plot represents the 
promoter intersection number measured across all patients (center portion) indicated by a filled bullet point. The right histogram represents the total 
number of unique promoters measured across all cells from a given tumor with IDH mutation status indicated by color.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Somatic copy number alteration examples estimated from whole genome sequencing, single-cell Reduced Representation 
Bisulfite Sequencing, and single-cell RNA-sequencing. a-c, Representative images of copy number alterations derived from SM012 (IDHwt initial) whole 
genome sequencing (WGS) data. a, Depth ratio for each segment with copy number status determined as compared with germline (normal blood) WGS 
data. b, SM012 Single-cell DNAme-based copy number estimates (n = 69 tumor cells) with copy number integer depicted by color (blue = CN loss, 
white = neutral CN, and red = CN gain). Each row is a single cell with annotation for DNAme disorder provided. c, SM012 Single-cell RNAseq based copy 
number inference (n = 5,489) identifying major copy number events found in WGS with labelled subclones as presented in Fig. 6a. d-f, Similar example 
profiles as presented in a-c, for tumor sample SM006 (IDHwt initial, n = 82 scRRBS cells, n = 3,310 scRNAseq cells). g-i, Similar example profiles as 
presented in a-c for tumor sample SM001 (IDHmut recurrence, n = 181 scRRBS cells, n = 5,713 scRNAseq cells).
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Extended Data Fig. 4 | Distribution and relationship of DNAme and DNAme disorder throughout the glioma genome. a, Visualization of inter-tumoral 
and intra-tumoral variation in DNAme (10 kb tiled DNAme). Genome-level and chromosome-level DNAme across 844 single tumor cells. Each row 
represents a single cell clustered based on pairwise dissimilarity between methylomes as presented in main Fig. 1b and each column represents a single 
10 kb tile over which DNAme has been averaged as indicated by heatmap color (methylated = red, unmethylated = blue). The tile color for a cell that does 
not have a measurement for a given tile is represented by white and a tile without a measurement across any cells is represented by grey. Row annotation 
both patient identifier and IDH mutation status are presented for each cell. b, Boxplots highlighting the single-cell DNAme disorder estimates calculated 
across different genomic contexts with Kruskal-Wallis p-values indicating the differences in distributions across the groups. Each box spans the 25th and 
75th percentile, center lines indicate the median, and the whiskers represent the absolute range (minima/maxima), excluding outliers. c, The dominant 
Catalogue of Somatic Mutations in Cancer (COSMIC v3) mutational signatures are presented for each subject. The stacked bar plots represent the relative 
contribution of each mutational signature to the tumor’s mutational burden. Colors indicate distinct mutational signatures, which are further annotated 
with their proposed etiology. d, Scatterplots and linear regression lines with standard error showing the relationship between genomic context-specific 
single-cell DNAme disorder (sample-specific scRRBS average) and genomic context-specific mutation burden derived from whole genome sequencing 
(n = 10 excluding hypermutant sample). Panels are separated into global (that is, all regions), promoter, gene body, and intergenic regions (Spearman 
correlations ρ > 0.05 for all comparisons). e, Scatterplot of the context-specific DNAme disorder (x-axis) vs. the average DNAme value (beta-value) for 
each genomic compartment. Subtype level Spearman correlation coefficients and p-values are presented. f, The median absolute deviation of DNAme 
across all cells from the same subtype (inter-patient heterogeneity) and g, all cells from the same patient (intra-patient heterogeneity). Two-sided 
Wilcoxon rank sum tests comparing median absolute deviation levels between IDHmut and IDHwt are presented for intra-patient DNAme heterogeneity.
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Extended Data Fig. 5 | Association between DNAme disorder and disrupted transcriptional programs. a, Boxplots of gene expression values, in 
log(counts per million+1), from single-cell RNAseq data across different sets of gene body regions defined by gene-derived DNAme disorder groups. 
Each box spans the 25th and 75th percentile, center lines indicate the median, and the whiskers represent the absolute range (minima/maxima), excluding 
outliers. Surrounding violins represent the distribution for each group. Gene DNAme disorder groups are defined by the determining the mean DNAme 
disorder value across a single gene. Color indicates IDH1 mutation status. b-c, Scatterplots depicting single-cell gene-level DNAme disorder average 
plotted against the gene-level methylation estimates in both b, promoter regions and c, gene body regions. d-e, Gene Ontology enrichment analyses  
with false discovery rate correction for high DNAme genes and low DNAme disorder genes using gene body estimates. f, Representative density curves  
of distribution of epiallele CpGs in each patient overlapping a specific TFBS motif (for example, SOX2), with curves annotated by patient identifier.  
g, Gene Ontology enrichment analysis of TFs with high DNAme disorder in their binding sites with false discovery rate correction. h, Scatterplot depicting 
the association between average single-cell DNAme disorder estimate and single-sample Gene Set Enrichment Score for stress response, hypoxia, and 
random genes from bulk RNAseq data. Spearman correlation coefficient and p-values are indicated.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pan-glioma cell state assignment and characteristics. a, UMAP dimensionality reduction plot of all scRNAseq data, including 
tumor and non-tumor cells (n = 55,248 cells). Each dot depicts a single cell and colors represent the tumor of origin. Shaded regions represent cell state 
classification. b, Stacked violin plots of average single-cell gene expression for cells presented in Supplementary Fig. 6a. Selected genes presented are 
informative for cell state classification. c, Stacked bar plots representing the proportion of non-tumor cellular states d, Stacked bar plots representing 
the proportion of tumor cellular states per tumor for pan-glioma classification (top row) and previously published classifications (lower left row; 
Venteicher et al. and lower right Neftel et al.) e, Sankey plot representing the proportion of IDHmut tumor cells with pan-glioma classification and 
associated classification described in Venteicher et al. (left). Sankey plot representing the proportion of IDHwt tumor cells with pan-glioma classification 
and associated classification described in Neftel et al.(right). f, scRNAseq area under the curve estimates for selected gene sets (that is, proportion of 
expressed genes in signature per cell). The AUC estimates are presented for response to stress, hypoxia, and random gene set signatures summarized 
by pan-glioma cell state and separated by IDH mutation subtype. All cells from a single patient are normalized to its median AUC value for a given 
signature. Higher relative values indicate greater enrichment score for each signature. P-values represent two-sided Wilcoxon rank sum tests comparing 
differentiated-like tumor cells with stem-like and proliferating stem-like. g, Density plots representing TFBS motif DNAme disorder (scRRBS data) in 
IDHmut (left) and IDHwt (right) single-cell DNAme data for TFs whose activity (scRNAseq based SCENIC analysis in Fig. 6c,d) characterizes a specific 
cell state (n = 15 TFs per cell state). Kolmogorov-Smirnov p-value tests for differences in TFBS DNAme disorder across the cellular states. Dotted lines 
represent the median TFBS motif DNAme disorder value for cell state defining TFs.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | LIGER integrated tumor-specific clustering of single-cell RNA and single-cell DNAme data. a, Schematic diagram representing 
LIGER workflow to jointly cluster single-cell RNAseq and DNAme data generated from the same tumor dissociation. b, Joint single-cell RNAseq (scRNA) 
and single-cell DNAme (scDNAm) clustering and UMAP projections highlighting similar cellular state distributions across platforms. Sample annotation 
is presented on the left of each paired UMAP plot, each dot is an individual single cell, and cell number for each technology is presented in the lower-left 
hand corner. UMAP coordinate space remains the same for both scRNA and scDNAm visualizations with cellular states for that platform represented 
by a colored dot and data for the other platform represented by a gray dot. Stacked bar plots enumerating the proportion of cellular states detected by 
each platform are presented to the right of each paired UMAP plot. ‘*‘ indicate specimens in which the cellular proportions across the two platforms are 
significantly different (two-sided Fisher’s Exact test, p < 0.05). c, Promoter DNAme for samples with sufficient number of cells in each state. Each box 
spans the 25th and 75th percentile, center lines indicate the median, and the whiskers represent the absolute range (minima/maxima), excluding outliers. 
Surrounding violins represent the distribution for each condition. Two-sided Wilcoxon rank sum test p-values are presented for each tumor.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNAturE GEnEtIcS

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Stress-associated changes in DNAme disorder are associated with altered population-level transcriptional dynamics and 
not related with genetic changes. a, Relative gene expression levels for two patient-derived glioma sphere-forming cells for candidate gene cell state 
(SOX2, POU5F1) and cell stress (JUN, EPAS1 (HIF2A), VEGFA) via RT-PCR. Normoxia and varying levels of hypoxia (2% and 1% oxygen, n = 4 per group) 
were assessed. Statistical significance (p < 0.05, Tukey HSD) is indicated by an asterisk. b, Relative DNAme disorder in hypoxia conditions (2% and 
1%) compared with normoxia. P-values for Kruskal-Wallis tests are presented across specific genomic contexts (n = 4 per group). c, Upset plot of 
shared mutations for a randomly selected replicate from cell line HF3016 cultured under normoxia and irradiation (10 Gy). Mutations were determined 
in reference to patient normal blood. The mutational overlap is presented by the black bar with the mutations called private to irradiation and control 
also presented. d, Heatmap representing transcription factors that were determined to have consistently different TFBS motif DNAme disorder levels in 
stress conditions (hypoxia and irradiation) compared with controls across both cell lines (p < 0.1 two-sided Wilcoxon rank sum test across all cell lines 
and two stressors) are presented with their change in inferred TF activity (SCENIC, methods). e-f, ELK4 and TFDP1 are presented for TFBS motif DNAme 
disorder (RRBS) and TF activity (scRNAseq), which demonstrated consistent changes in TFBS motif DNAme disorder and stress altered TF activity. Two-
sided Wilcoxon rank sum test p-values are presented. g-h, scRNAseq scaled gene expression heatmaps for the top 5 differentially expressed genes per 
stress exposure and time point. i-j, Stacked bar plots comparing the cell state proportions for the Neftel et al. proliferation-independent IDHwt classifier 
across different stress conditions, time points, and cell lines. Statistical differences are presented for Chi-Square test (*** = p < 0.001). Oligodendrocyte 
progenitor cell-like (OPC-like), Neural progenitor cell-like (NPC-like), Mesenchymal-like (MES-like), and Astrocyte-like (AC-like) cell states are presented.
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Extended Data Fig. 9 | Whole genome sequencing phylogenetic inference of tumor samples. a, Stacked bar plots representing the proportion of 
whole-genome sequencing (WGS) derived somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. b-i, Phylogenetic 
trees constructed from whole genome sequencing data (mutations and somatic copy number alterations) using phyloWGS and further annotated 
using single-cell inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations specific to the given clone, with node size 
corresponding to the fraction of cells with the associated alterations. Branch length scales with the number of mutations attributed to that clone. Clonal 
alterations are colored in blue, with subclonal alterations colored in gold. Genes considered significantly mutated in TCGA analyses2 and chromosomal 
arm-level events are presented. Arm-level events are defined as spanning at least 80 percent of the chromosome arm, while partial events span at least 
40 percent.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Genetic influences on epigenetic and transcriptional diversity in glioma cells. a-c, SCNA phylogenetic trees annotated with 
scRRBS-derived cell state. Adjacent boxplots are presented for DNAme and DNAme disorder across cuts in the dendrograms. d-e, Extrachromosomal 
DNA circular amplicon reconstruction displaying genomic rearrangements predicted from whole genome sequencing. Coverage depth is represented as a 
histogram across a genomic interval with segment copy number (CN) estimation provided on the right y-axis. Discordant read pair clusters are indicated 
by arcs and colors highlight read pair orientation (for example, brown = everted read pairs61). Amplicon intervals are provided at the bottom of the plot 
with annotation for known oncogenes (for example, EGFR). f, EGFR copy number estimation from single-cell RRBS data in ecDNA+ tumors. Cells with EGFR 
copy number greater than 6 were classified as EGFR ecDNA+ (blue). g, Single-cell 10-kb tiled DNAme separated by EGFR ecDNA status. Single cells with 
inferred copy number status greater than 6 were classified as ecDNA+ (blue). Two-sided Wilcoxon rank sum test p-values comparing DNAme across 
ecDNA status are reported for each patient tumor. h, Boxplots depicting transcriptional diversity using gene count signatures calculated in scRNAseq data 
for each tumor, with cells separated based on inferred EGFR copy number status (gray = EGFR ecDNA-, blue = EGFR ecDNA+). Transcriptional diversity 
was compared based on predicted ecDNA status within each tumor subclone. Stars (*) indicate statistically significant differences based on two-sided 
Wilcoxon rank sum test (p < 0.05). Each box plot in this figure spans the 25th and 75th percentile, center lines indicate the median, and the whiskers 
represent the absolute range (minima/maxima), excluding outliers. Surrounding violins represent the distribution for each condition.
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