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Single-cell multimodal glioma analyses identify
epigenetic regulators of cellular plasticity and
environmental stress response
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Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and contributes to therapeutic resis-
tance. We integrated 914 single-cell DNA methylomes, 55,284 single-cell transcriptomes and bulk multi-omic profiles across
11 adult IDH mutant or IDH wild-type gliomas to delineate sources of intratumoral heterogeneity. We showed that local DNA
methylation disorder is associated with cell-cell DNA methylation differences, is elevated in more aggressive tumors, links
with transcriptional disruption and is altered during the environmental stress response. Glioma cells under in vitro hypoxic
and irradiation stress increased local DNA methylation disorder and shifted cell states. We identified a positive association
between genetic and epigenetic instability that was supported in bulk longitudinally collected DNA methylation data. Increased
DNA methylation disorder associated with accelerated disease progression and recurrently selected DNA methylation changes
were enriched for environmental stress response pathways. Our work identified an epigenetically facilitated adaptive stress

response process and highlights the importance of epigenetic heterogeneity in shaping therapeutic outcomes.

in adults and are incurable. Extensive molecular character-
ization of gliomas has defined genomic drivers and clinically
relevant subtypes, such as those based on the presence of IDH1/2
gene mutations (that is, IDH mutant and IDH wild-type (WT))'~.
Inter- and intratumoral heterogeneity are salient features across
glioma subtypes that contribute to universal therapeutic resistance.
The heterogeneity observed in surgical resection specimens reflects
each tumor’s evolutionary path, which is driven by competition
between subpopulations harboring diverse genetic, epigenetic and
transcriptional aberrations**. Thus, understanding how these dif-
ferent layers of heterogeneity integrate to define clonal lineages and
drive glioma evolution may provide insights into treatment failure.
The study of tumor heterogeneity is complicated by cellular
plasticity that enables cancer cells to reversibly transition between
distinct cellular states in response to genetic, microenvironmental
and therapeutic stimuli’. Single-cell RNA sequencing (scRNA-seq)
studies have previously identified such dynamic cellular states in
IDH WT gliomas'®-*. Cell states of IDH mutant gliomas displayed a
more restricted plasticity along a hierarchical differentiation axis'*"".
Epigenetic modifications, such as DNA methylation (DNAme)

D iffuse gliomas are the most common malignant brain tumors

at cytosine followed by guanine dinucleotides (that is, CpGs), are
mitotically heritable marks and encode cellular states and dynam-
ics'®. For example, the transition from a differentiated-like state
to an undifferentiated, or stem-like, state after chemotherapy in
glioma was accompanied by epigenetic reprogramming'’. However,
the epigenetic mechanisms that enable cellular plasticity and regu-
late glioma cell states are poorly understood.

Aberrant DNAme resulting from errors in the placement or
removal of epigenetic marks can provide genetically identical cells,
the diversity needed to respond to environmental stressors. These
stochastic errors in DNAme replication result in increased local
DNAme disorder'®. DNAme disorder is present in non-tumor cells,
potentially reflecting active epigenetic remodeling, DNAme drift
associated with age or environmental exposures'’. DNAme disorder
may accumulate in cancer cells as passenger events or be evolution-
arily selected by destabilizing gene expression programs’. Previous
studies of glioma have demonstrated associations between bulk
tumor epigenetic heterogeneity metrics and clinical outcomes>>*.
Together, these findings suggest that stochastic DNAme alterations
contribute to tumor heterogeneity and cellular plasticity that may
drive the evolution of treatment-resistant phenotypes.
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In this study, we integrated single-cell DNA methylomes,
single-cell transcriptomes and single-cell copy number profiles with
bulk genomic profiles across a cohort of 11 glioma patient samples
to dissect heterogeneous cell populations®'~** and define epigenetic
states that contribute to tumor evolution'**. We combined these
in vivo analyses with in vitro perturbations to identify the gene reg-
ulatory regions most susceptible to stochastic DNAme alterations,
the epigenetic modulation of transcriptional networks involved
in glioma cellular identity and that DNAme disorder may aid the
cellular stress response. Our work provides insights into the sources
of intratumoral heterogeneity that fuel glioma evolution.

Results

Single-cell DNAme links DNAme disorder with epigenetic
heterogeneity. To investigate glioma heterogeneity, we performed
single-cell DNAme (scDNAme) and single-cell gene expression
accompanied by bulk whole-genome sequencing (WGS), RNA
sequencing and DNAme microarray in 11 adult patients with
glioma (Fig. 1a). Both principal molecular subtypes (IDH mutant
and IDH WT) and distinct clinical time points (that is, unmatched
initial and recurrent tumors; Supplementary Table 1 and Extended
Data Fig. 1) were represented. We mechanically dissected tumor
specimens from the same geographical region dissociating tissue for
single-cell protocols, flash-freezing tissue for bulk genomic assays
(Fig. 1a). We applied single-cell reduced representation bisulfite
sequencing (scRRBS) and 10x Genomics single-cell transcriptomics
on cells from the same dissociation (Extended Data Fig. 2a)*.
Viable CD45~ (that is, pan-immune cell marker) cells were plated
for scRBBS, while single-cell transcriptomics was performed on all
viable cells, arriving at a set of 914 single-cell methylomes and 55,284
single-cell transcriptomes. On average, approximately 145,000 mean
unique CpG dinucleotides or 2,340 expressed genes were measured
per cell. On average, approximately 8,000 mean CpGs were shared
between any two cells (Extended Data Fig. 2b-h). Tumor and nor-
mal cells were grouped by inferred copy number alterations result-
ing in a final set of 844 DNAme and 30,831 transcriptomic tumor
cell profiles (Methods and Extended Data Fig. 3a-i).

Unsupervised clustering and multidimensional scaling (MDS)
of the pairwise distances between scDNAme patterns grouped
tumor cells by IDHI mutation status (Fig. 1b) since IDH mutant
tumors display greater genome-wide DNAme levels (Wilcoxon
rank-sum test P<2.2X 107" Fig. 1c)”. The colocalization of cells
from different patients suggested shared epigenetic states. The iso-
lated patient-specific grouping of one of six IDH mutant and two
of five IDH WT tumors may reflect epigenetic diversity that is also
influenced by genetic intertumoral heterogeneity (Fig. 1b, Extended
Data Figs. 1 and 4a).

We next evaluated intratumoral epigenetic heterogeneity by
quantifying stochastic DNAme alterations in each single cell. In
normal cells, DNAme congruence in nearby CpGs reflects tightly
ordered gene regulation (Fig. 1d, top)*. Local DNAme disorder
may disrupt both proximal and distal gene regulation (Fig. 1d, bot-
tom)'. We defined DNAme disorder within a cell and across spe-
cific genomic compartments as the proportion of sequencing reads
discordant for DNAme status (PDR) as described previously™'**.
Cell-cell DNAme disorder variation differed by tumor (Fig. le)
and was increased in tumor cells compared with non-tumor cells
(Wilcoxon rank-sum test P<0.0001; Extended Data Fig. 4b). Total
somatic single-nucleotide variant burden, reflecting patient age®
and mutational processes (Extended Data Fig. 4c), was not associ-
ated with mean DNAme disorder (Spearman correlation p=0.26,
P=0.43), independent of sequence context (Extended Data Fig. 4d).
However, DNAme disorder was associated with the fraction of
the genome with somatic copy number alteration (SCNA) bur-
den (Spearman correlation p=0.66, P=0.03; Fig. le). Cell cycle
checkpoint deregulation, which generates SCNAs through a cell’s
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compromised ability to correct mis-segregations®, may continue to
drive stochastic DNAme replication errors during evolution rather
than being elevated in the tumor cell of origin.

To examine whether local DNAme disorder is associated with
broad DNAme heterogeneity, we calculated the DNAme disorder
and DNAme status for each cell across specific genomic contexts
including: CpG islands (CGIs) and CGI shores, Alu repeat ele-
ments and chromatin remodelers (EZH2 and CTCF; Extended Data
Fig. 4e). In high DNAme regions (for example, Alu repeat elements),
increased DNAme disorder was associated with decreased DNAme,
while in lower DNAme regions (for example, CGIs), an increased
DNAme disorder was associated with increased DNAme (Extended
Data Fig. 4e; Spearman correlation P<0.01). These associations
persisted in individual tumors (Fig. 1f,g; Spearman correlation
P<0.01), highlighting how local DNAme disorder may reflect
epigenetically dynamic regions that contribute to the observed
intratumoral epigenetic heterogeneity’>”’. To compare inter- and
intratumoral DNAme variation, median absolute deviations were
calculated across single cells, grouping cells by subtype (Extended
Data Fig. 4f) and patient (Extended Data Fig. 4g). Consistent
with the results of unsupervised clustering (Fig. 1b), intertumoral
heterogeneity was approximately 2-3 times greater (IDH WT) than
intratumoral heterogeneity (Extended Data Fig. 4f,g), with promot-
ers/CGIs representing variably methylated regions within a tumor.
The DNAme disorder tended to increase moving away from CGI
centers (Spearman correlation R=0.5, P=3.1x10"* IDH mutant
and R=0.6, P=4.1x1077 IDH WT) suggesting that selection may
reduce DNAme disorder that impairs cellular fitness at these tightly
regulated regions (Fig. 1h). Together, scDNAme profiling suggests
that the variability observed at critical gene regulatory regions is
influenced by DNAme disorder and higher levels of disorder may
reflect epigenetic remodeling.

Elevated DNAme disorder in cell identity and stress pathways.
DNAme disorder may disrupt transcriptional programs'®. Using
companion scRNA-seq data, we examined the association between
DNAme disorder and gene expression. Mean expression was
reduced (Kruskal-Wallis P<2.2x107'% Fig. 2a) with increased
levels of DNAme disorder at both promoters and gene bodies
(Kruskal-Wallis P<2.2x107'; Fig. 2a and Extended Data Fig. 5a).
Previous CGI observations (Fig. 1g) suggest that DNAme disorder
at gene regulatory regions usually results in repressive DNAme
(Extended Data Fig. 5b,c), contributing to gene expression dysregu-
lation. Gene Ontology (GO) enrichment analysis on genes with high
DNAme disorder (that is, DNAme disorder>0.4) and genes with
low DNAme disorder (that is, DNAme disorder =0-0.1) (Methods)
found that high DNAme disorder genes associate with cellular dif-
ferentiation processes (Fisher’s exact test adjusted P < 0.05; Fig. 2b)
and low DNAme disorder genes associate with critical cell cycle and
metabolic processes (Fisher’s exact test adjusted P <0.05; Fig. 2c).
The enrichment results were consistent when using promoter or
gene body DNAme disorder groupings (Extended Data Fig. 5d,e).
Changes in DNAme patterns at DNA-binding motifs can posi-
tively or negatively impact transcription factor binding™. We
identified regulatory elements susceptible to DNAme changes by
determining DNAme disorder of transcription factor binding site
(TFBS) motifs (Fig. 2d). Most TFBS motifs showed higher DNAme
disorder in IDH WT compared with IDH mutant cells, consistent
with general subtype differences. Transcription factors essential for
glioma stem cell maintenance (for example, SOX2, SOX9 (ref. **))
hadlower than median binding site motif DNAme disorder indepen-
dent of surrounding motif CpG density, implying selection against
DNAme changes at these target regions (Fig. 2d and Extended Data
Fig. 5f). In contrast, transcription factors with higher binding site
motif scDNAme disorder (Methods) were related to the response
to extracellular stimuli (Extended Data Fig. 5g). Increased DNAme
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Fig. 1] Single-cell DNA sequencing highlights the association between epigenetic intratumoral heterogeneity and local DNAme disorder. a, Schematic
diagram detailing tumor sample processing and molecular profiling of single cells and bulk tumor samples (n=11 individuals). b, MDS analysis using
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent whether a sample was a single tumor cell (n=2844 cells)
or 50 tumor cells (n=9 out of 11 individuals). The colors indicate individual patients, the shaded regions indicate the IDHT mutation status of the tumor
and annotation is provided indicating clinical time point (I =initial, R=recurrence). ¢, Box plots depicting single-cell mean 10-kb tiled DNAme with
individuals in columns and separated by IDH mutation status (color). Each box spans the 25th and 75th percentile, the center lines indicate the median
and the whiskers represent the absolute range (minimum/maximum), excluding outliers. The two-sided Wilcoxon rank-sum test P value is presented to
compare IDH mutant versus IDH WT cells. d, Schematic depiction of local DNAme disorder in different genomic contexts. Top: Promoter region where
DNAme disorder is associated with disrupted gene expression. Bottom: Example of disrupted transcription factor binding due to DNAme disorder. e, Box
plots of glioma cell DNAme disorder grouped by individual. The two-sided Wilcoxon rank-sum P value represents the comparison between IDH mutant
and IDH WT DNAme disorder. Each individual is annotated with clinical and molecular metrics with P values indicating the relationship between sample
mean DNAme disorder and WGS-derived somatic mutation burden or somatic copy number alteration burden (Spearman correlation). f,g, Alu repeat
element (f) and CGl-specific (g) scDNAme disorder and DNAme are shown in scatter plots with linear regression lines colored per individual patient.
Patient-specific Spearman correlation coefficients and P values are presented in Supplementary Table 2. Significant associations are denoted by ‘#' in
fand ‘X" in g. h, Mean DNAme values (top) and DNAme disorder (bottom) across CGls with upstream and downstream CGl shores. Each individual

is represented by a single curve and colored by its IDH mutation subtype. Subtype-specific Spearman correlation coefficient and P values indicate the
relationship between distance from the CGI center and increase in mean cell DNAme and DNAme disorder.
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Fig. 2| DNAme disorder at gene regulatory elements is associated with cell identity and stress response pathways. a, Box plots of gene expression
values from scRNA-seq data across different promoter DNAme disorder groups. Each box spans the 25th and 75th percentile, the center lines indicate
the median and the whiskers represent the absolute range (minimum/maximum), excluding outliers. The surrounding violins represent the distribution
for each condition. Kruskal-Wallis test P values are presented for each subtype. The y axis includes a line break to improve the visibility of violin tails.
b,c, GO enrichment analyses for high (b) and low DNAme disorder genes (c) using promoter DNAme disorder values with correction for false discovery
rate. d, Scatter plot of mean scDNAme disorder calculated across TFBS motifs within IDH subtype, ordered by IDH WT TFBS motif DNAme disorder.
Each column represents a single transcription factor with a colored dotted line connecting IDH mutant and IDH WT values. The names of transcription
factors previously indicated to confer fitness advantages to glioma cells (MacLeod et al.)* are listed above their TFBS motif DNAme disorder estimate.
Transcription factors with high DNAme disorder are shaded in red; annotation tracks are provided for motif length and motif CpG density (CpG density
area under the curve within +2 times the motif radius). P values represent the Spearman correlation for IDH mutant (P=0.73) and IDH WT (P=0.76).

disorder levels at environmental stress response regulators may
facilitate an adaptive response to stressors, such as hypoxia, which is
common in glioma™. To substantiate this association, we performed
single-sample gene set enrichment analyses using bulk RNA-seq
data and demonstrated positive associations between tumor average
DNAme disorder and upregulated stress response (Spearman cor-
relation R=0.9, P<0.01) or cellular response to hypoxia (Spearman
correlation R=0.98, P<0.001), but not randomly selected genes
(Spearman correlation R=—-0.05, P> 0.05; Extended Data Fig. 5h).
Taken together, these results suggest that intratumoral variability in
DNAme disorder may facilitate the adoption of distinct epigenetic
states in response to stress stimuli.

Single-cell multi-omics identifies epigenetic cell state regula-
tors. To evaluate how DNAme, stress response and cellular states
are associated, we defined each tumor’s cellular composition using
single-cell transcriptional profiles. We performed single-cell unsu-
pervised clustering analysis and annotated clusters using marker
genes (Fig. 3a and Extended Data Fig. 6a—d) to define glial, immune,
stromal and malignant populations'®'>. Malignant cells were dis-
tributed over three canonical stem cell marker SOX2-expressing cell
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states (Extended Data Fig. 6b) and existed across both IDH mutant
and IDH WT tumors. We labeled these pan-glioma cell states (1)
differentiated-like, (2) stem-like and (3) proliferating stem-like
tumor cells (Fig. 3a, Extended Data Fig. 6b and Supplementary
Table 3). Enumerating the proportion of pan-glioma malignant
states showed that IDH mutant gliomas are enriched for stem-like
cells (median 61%), while IDH WT gliomas contained predomi-
nantly differentiated-like cells (median 83%) and significantly more
proliferating stem-like cells (median 16% IDH WT versus 2% IDH
mutant, Wilcoxon rank-sum test P=0.02; Fig. 3b). The previously
described malignant astrocyte-like and oligodendrocyte-like IDH
mutant glioma cell types'® corresponded to differentiated-like cells,
as well as astrocyte-like and mesenchymal-like IDH WT glioma cel-
lular states' (Fig. 3b and Extended Data Fig. 6e). The proliferating
stem-like and stem-like states aligned closely with undifferenti-
ated IDH mutant cells and oligodendrocyte progenitor-like, neural
progenitor-like IDH WT cells, respectively (Extended Data Fig. 6e),
highlighting the consistency of these pan-glioma signatures with
existing glioma signatures'"".

We next inferred gene regulatory networks from single-cell
expression profiles to identify transcription factors governing cell
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states per tumor for pan-glioma malignant cell classification. Each sample is annotated with molecular metrics with P values indicating the relationship
between cell type diversity, measured by Shannon's entropy, and sample mean DNAme disorder, WGS-derived somatic alteration burden or WGS-derived
somatic mutation burden (Spearman correlation). ¢,d, Enriched transcription factor activity across pan-glioma cellular states determined using the SCENIC
algorithm and displayed as a heatmap of cell state median relative z-scores. Visualization is presented for the top 15 most active transcription factors

of 5,000 randomly downsampled tumor cells in both IDH mutant (¢) and IDH WT (d). e, Promoter DNAme disorder for tumors with at least ten cells

per inferred cell state. Each box spans the 25th and 75th percentile, the center lines indicate the median and the whiskers represent the absolute range
(minimum/maximum), excluding outliers. The surrounding violins represent the distribution of each condition. Two-sided Wilcoxon rank-sum test P values
are presented for each tumor. f, Region set enrichment analysis for differentially methylated regions (DMRs, 10-kb tiles) with higher DNAme in stem-like
(left) or differentiated-like cells (right). Enrichment was determined by LOLA. Individual points represent the enrichment of specific transcription factors in
DMRs; the color indicates results for specific IDH subtypes; the dotted line represents the statistical significance threshold (adjusted P < 0.05).

states”’, which predicted a key set of transcription factors for each
of the three pan-glioma cell states (Fig. 3c,d). Stem-like tumor
cells demonstrated the highest activity for known stem cell regu-
lators such as SOX2, SOX8 and OLIG2 (Fig. 3c,d). In addition to
high SOX2/SOX8/OLIG2 activity, proliferating stem-like cells
showed overrepresentation of chromatin remodeling and DNA
repair gene networks as directed by EZH2 and BRCA1 (Fig. 3c,d).
In contrast, differentiated-like cells demonstrated high transcrip-
tion factor activity in astrocyte differentiation (that is, SOX9) and
stress response (that is, JUND, FOS) processes. We confirmed that

1460

differentiated-like cells had significantly greater stress and hypoxic
transcriptional response compared with stem-like cells (Wilcoxon
rank-sum test, P < 2.8 X 10~ Extended Data Fig. 6f). DNAme disor-
der did not significantly differ between cell state-specific transcrip-
tion factors (Kolmogorov-Smirnov test P>0.05; Extended Data
Fig. 6g). However, high binding site motif DNAme disorder levels
were observed for several differentiated-like cell state transcription
factors (for example, JUND and SREBF1), nominating them as cel-
lular fitness regulators whose activity may be influenced by DNAme
patterns (Fig. 3c,d).
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To define the epigenetic states of stem-like and differentiated-like
cells, we used the linked inference of genomic experimental rela-
tionships (LIGER) method* to identify shared properties between
single-cell gene expression and DNAme data (Extended Data Fig. 7a).
scDNAme and scRNA integration displayed a similar malignant
cell state distribution within each sample, as expected when derived
from the same tissue dissociation (Extended Data Fig. 7b). We
next investigated the DNAme disorder and DNAme properties of
stem-like (combining stem-like and proliferating stem-like) and
differentiated-like cell state classifications. In tumors with both
populations, stem-like cells displayed significantly increased pro-
moter DNAme disorder (5 out of 6 tumors, Wilcoxon rank-sum
test P<0.05; Fig. 3e, left) and decreased promoter DNAme (4 out
of 6 tumors, Wilcoxon rank-sum test P<0.05; Extended Data
Fig. 7¢), potentially reflecting the greater transcriptional diversity of
stem-like cells. To identify DNAme changes between stem-like and
differentiated-like cells, we used a linear mixed effect model with
tumor of origin as the random effect (Methods). Regions with differ-
ential DNAme across cell states were enriched for SP1 and TFAP2A
binding sites, two transcription factors that frequently co-regulate
developmentally associated genes (Fig. 3f)”. We also identified
increased DNAme at the binding sites of HIF1A/ARNT, the mas-
ter transcriptional regulator of hypoxic response, in stem-like cells
(Fig. 3f). Since increased DNAme at binding sites may reduce tran-
scription factor binding efficiency, these results suggest that elevated
cell stress transcription factor activity in differentiated-like cells may
occur via epigenetic remodeling (Fig. 3f). Together, these results
suggest that perturbing epigenetic control via DNAme disorder
may promote the cell state plasticity necessary to tolerate diverse
stressful microenvironments, including hypoxia* and therapy'”**.

In vitro stress perturbations increase local DNAme disorder.
To directly determine whether environmental stressors impact
DNAme disorder and cellular states, we subjected patient-derived
glioma sphere-forming cells independently to a common tumor
stress exposure (that is, hypoxia) and therapeutic exposure (that
is, irradiation) (Fig. 4a). For both experiments, we used bulk RRBS
with biological replicates (n=6 average per condition, 60 total
replicates), and gene expression with scRNA-seq. Importantly, each
bulk RRBS sequencing read came from a single cell at single-allele
resolution enabling DNAme disorder comparisons with our
scRRBS data. We exposed two glioma cell lines to normoxic and
hypoxic conditions and collected cells at 3 and 9d. Candidate gene
expression analyses via real-time PCR demonstrated that a robust
cellular stress response was already present at the 3-d time point
with an observed hypoxia dosage effect (Extended Data Fig. 8a,b).
No hypoxia-associated DNAme disorder changes were detectable at
the 3-d time point (Wilcoxon rank-sum test P> 0.05; Fig. 4b, left).
However, there were significant hypoxia-associated DNAme disor-
der increases in both cell lines at the 9-day time point, suggesting
that DNAme disorder accumulates with successive cell divisions
(Wilcoxon rank-sum test P < 0.05; Fig. 4b, right). In parallel, we also
irradiated the two glioma models with 2.5 Gy per day for 4 consecu-
tive days (10 Gy total) and then collected these cells at the 9-d time
point. Unlike the hypoxia exposure, the irradiation stressor was not
continuous and measurements were taken after 5d of recovery. The
cells exposed to irradiation also demonstrated significant increases
in DNAme disorder at CGI and promoter regions (Wilcoxon
rank-sum test P<0.01; Fig. 4c) compared with the 9-d normoxia
(0 Gy) samples. We confirmed through WGS that irradiated and con-
trol cells shared highly similar mutational profiles, suggesting that
the DNAme disorder increases were not due to underlying genetic
changes (Extended Data Fig. 8c). In both hypoxia and irradiation
experiments, there was reduced stress-associated DNAme disorder
in regions flanking CGIs (shores) in one cell line, but no signifi-
cant changes at intergenic regions indicating that DNAme disorder
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may confer different selective advantages dependent on genomic
context (Fig. 4b,c). DNAme disorder increases under direct stress
(hypoxia) and after recent stress exposure (irradiation) suggests
a common stress response mechanism that is retained even after
stress removal. This is further supported by increased DNAme dis-
order at the binding site motifs of transcription factors whose activ-
ity is associated with cell fitness (Extended Data Fig. 8d), including
upregulated ELK4, which contributes to the malignant phenotype
through c-Fos regulation®, and downregulated TFDP1, which pro-
motes transcription from E2F target genes*, whose altered activity
levels may enable survival under stress (Extended Data Fig. 8e).

We next assessed whether stress-associated DNAme disorder
increases are linked to cellular state shifts using scRNA-seq (10 total
replicates, n=5 conditions for 2 cell lines each, n=24,460 cells).
Unsupervised clustering by cell line demonstrated that stressed
cells did not adopt new cell states but manifested as population cell
state distribution shifts (Fig. 4d—g). This was supported by relatively
few stress-specific differentially expressed genes (hypoxia=166
(H2354), 68 (HF3016); irradiation=27 (H2354), 26 (HF3016);
Wilcoxon rank-sum test adjusted P <0.05) that tended to be highly
expressed across all states within a condition (for example, TXNIP
in hypoxia; Extended Data Fig. 8g,h). We observed that there were
hypoxia-associated increases in differentiated-like cell and reduc-
tions in proliferating stem-like cell proportions across both cell
lines (chi-squared P<2.2x107'%; Fig. 4e,g). Response to irradia-
tion resulted in an increased stem-like compartment for HF2354
and a greater differentiated-like cell compartment for HF3016
(chi-squared test P<0.01). After 9d, cell state distributions of
both irradiated cell models and the hypoxia condition for HF3016
were more comparable to controls, suggesting that stress-induced
transcriptional shifts can be transient. We confirmed these
stress-associated cell state shifts using a proliferation-independent
IDH WT-specific cell classifier (Extended Data Fig. 8i,j). Taken
together, stress-associated increases in DNAme disorder suggest
that distinct microenvironmental pressures contribute to intratu-
moral epigenetic heterogeneity that may facilitate or stabilize adap-
tive cell state shifts.

SCNAs are positively correlated with DNAme disorder. We next
investigated whether cellular stress resulting from genetic stimuli,
in addition to environmental stimuli, could further explain DNAme
disorder variability across a tumor. The fraction of the genome with
SCNAs correlated with DNAme disorder at the bulk level (Spearman
correlation p=0.66, P=0.03; Fig. le) and at the single-cell level for
promoter-specific DNAme disorder and single-cell-inferred SCNAs
(Spearman correlation R=0.70, P<2.2x 107 IDH mutant and
R=0.6, P<2.2x107' IDH WT; Fig. 5a). There were 3 significant
intratumoral positive associations (Spearman correlation P < 0.05;
Fig. 5a) indicating a weaker genetic effect or greater influence of
microenvironmental stressors within a single tumor (Fig. 5a). To
determine whether this relationship was driven by greater DNAme
disorder in copy number altered regions, we calculated the DNAme
disorder by cell in copy number-altered and non-altered regions.
We did not observe a consistent relationship between DNAme
disorder and the copy number status in scDNAme data (paired
Wilcoxon rank-sum test P>0.05). This suggests that aneuploidy
does not directly account for epigenetic diversity increases but
that genetic and epigenetic events are shaped by similar biologi-
cal processes (for example, DNA replication stress). Late replicat-
ing regions of the genome accumulate more DNA mutations and
structural rearrangements* and we observed a positive association
between single-cell promoter and gene body DNAme disorder with
later replicating regions (Kruskal-Wallis P<1x107* Fig. 5b). Late
replicating genomic regions may have reduced capacity to correct
aberrant methylation leading to their preferential accumulation in a
largely stochastic manner.
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Fig. 4 | Environmental stressors increase local DNAme disorder in vitro and are associated with cellular state shifts. a, In vitro experimental workflow.
Patient-derived glioma sphere-forming cells were exposed to continuous stress (hypoxia, 3 and 9-d), stress followed by recovery (irradiation, 4-d stress
exposure and 5-d recovery) and no stress/normoxia controls. Biological replicates were then profiled with bulk RRBS (n=6 average per condition) and
scRNA-seq. b, Box plot of relative DNAme disorder (normalized to controls) for hypoxia at the 3-d time point (left) and 9-d time point (right). Each box
spans the 25th and 75th percentile, the center lines indicate the median and the whiskers represent the absolute range (minimum/maximum), excluding
outliers. Two-sided Wilcoxon rank-sum test P values are presented for different genomic contexts. Each row represents a distinct IDH WT patient-derived
cell line (HF2354 and HF3016). ¢, Relative DNAme disorder for irradiated (10 Gy) compared with no exposure controls (normoxia, O Gy). d, UMAP
dimensionality reduction plot of scRNA-seq for HF2354 exposed to 3-d hypoxia, 9-d hypoxia and 9-d irradiation with no treatment controls. The inset
UMAP projections are identical with different annotations to demonstrate the different stress conditions, the pan-glioma cell states described here and the
proliferation-independent cell states (Neftel et al."). e, Stacked bar plot for the pan-glioma cell states summarized by stress exposure and time point for
HF2354 (n=11,488 cells). Chi-squared tests for significant changes in cellular proportions between exposures are presented (***P<2.2x107'¢, **P < 0.07).
f, UMAP projection across stress conditions, pan-glioma cell states and proliferation-independent cell states for the second independent cell line HF3016
(n=12,972 cells). g, Stacked bar plot for pan-glioma cell states for HF3016 summarized by stress exposure and time point.

To validate the relationship between SCNA and DNAme dis-
order, we reanalyzed the bulk RRBS and copy number profiles of
initial (n=255 patients) and recurrent (n =129 patients) IDH WT
gliomas, including matched pairs (n=98 patients)’. SCNA burden
was positively associated with DNAme disorder at both initial and
recurrent time points, confirming our findings (Spearman corre-
lation R=0.43, P=3.5% 107" initial; R=0.33, P=1.7X 10 recur-
rence; Fig. 5¢). We repeated our analysis using only paired initial

and recurrent samples and observed a positive association between
increases in SCNA burden and DNAme disorder (Spearman correla-
tion R=0.37, P=0.0002; Fig. 5d). Furthermore, the greatest changes
in DNAme disorder between initial and recurrent tumor were asso-
ciated with a shorter time to second surgery in both univariate
(log-rank test P=0.04; Fig. 5¢) and multivariate survival analyses
(Cox proportional hazards model, hazard ratio (HR) = 1.5595% con-
fidence interval (CI)=1.39-2.34, P=0.03; Supplementary Table 3)
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Fig. 5| SCNAs are associated with DNAme disorder during disease evolution. a, Scatter plot depicting the association between single-cell-derived
(n=790 non-polyploid tumor cells) SCNA and promoter DNAme disorder by IDH mutant (left) and IDH WT (right) subtypes. Points and linear regression
lines are colored by individual. Spearman correlation coefficients represent subtype-specific estimates. Patient-specific significant positive correlations

are indicated by **P < 0.05 (Spearman correlation). b, Box plots with surrounding violins of DNAme disorder calculated across the promoter (left) and
gene body regions (right) based on different DNA replication times in IDH mutant (n=510) and IDH WT (n=334) single cells. Each box spans the 25th
and 75th percentile, the center lines indicate the median and the whiskers represent the absolute range (minimum/maximum), excluding outliers. The
surrounding violins represent the distribution for each condition. The Kruskal-Wallis P values indicate a test for differences across the replication time
groupings separately for IDH mutant and IDH WT cells ¢, Scatter plot with subtype-level linear regression lines depicting the reanalysis of bulk promoter
DNAme disorder and SCNA burden in IDH WT initial (n=255) and recurrent (n=129) tumors (Klughammer et al.). Spearman correlation coefficients
and P values are presented for each independent time point. d, Scatter plot and linear regression line depicting the association between bulk delta
(patient-specific recurrence versus initial estimates) SCNA burden and delta promoter DNAme disorder in longitudinally profiled IDH WT tumors (n=98
individuals, Klughammer et al.”). Spearman correlation coefficient and P value are presented. e, Kaplan-Meier curve depicting time to second surgery in
individuals where the change in promoter DNAme disorder between initial and recurrent disease was above (high, red) and below (low, blue) the median.
The log-rank P value for univariate analysis is presented within the figure. The HR and P value for change in DNAme disorder are presented for multivariate
Cox proportional hazards model including age and sex as predictors in Supplementary Table 4.

supporting that increased epigenetic instability is associated with  as clonal in non-hypermutant tumors) (Methods and Extended Data
accelerated disease progression. We did not observe a significant  Fig. 9b-i). To determine how strongly intratumoral genetic heteroge-
positive association with overall survival (Cox proportional haz-  neity is linked with epigenetic heterogeneity we compared the distri-
ards model, HR=1.43 95% CI=0.93-2.20, P=0.10; Supplementary  bution of cell states, DNAme and DNAme disorder across single-cell
Table 4). SCNA burden or aneuploidy results from errors in mitotic ~ copy number-based hierarchal clustering (scRRBS; Extended Data
checkpoints, which may further perpetuate DNAme disorder and  Fig. 10a-c). DNAme and DNAme disorder levels differed across
epigenetic heterogeneity through aneuploidy-induced metabolic = copy number clusters, suggesting genetic and epigenetic coevolu-
and replication stress®’. tion (Wilcoxon rank-sum test P<0.05; Extended Data Fig. 10a-c).
However, LIGER-defined cell state DNAme patterns were distrib-
Genomic alterations influence but do not define cell states. The uted across distinct copy number profiles suggesting a convergence
processes driving genetic, epigenetic and transcriptomic heteroge-  on shared epigenetic states. We next asked whether genetic tumor
neity may act at different times with dynamic effects on cellular state ~ subclones were associated with transcriptional diversity. We inferred
distributions. To evaluate the timing and relative impact of genetic  single-cell transcriptome copy number profiles and found that 3 of
alterations on epigenetic and transcriptomic intratumoral heteroge- 11 tumors (SM001, SM006 and SM012) had at least 2 distinct clones
neity, we inferred clonal phylogenies from bulk WGS data. One to  with chromosome arm-level alterations (Fig. 6b and Extended
four subclonal populations were detected per tumor (Fig. 6a), with ~ Data Fig. 3). These tumors demonstrated significant cell state dis-
linear and branched evolutionary patterns consistent with previous tribution shifts across clones suggesting that genetic heterogeneity
reports’®. Chromosomal arm-level SCNA events were more likely also increases transcriptomic heterogeneity (per sample Fisher’s
to be classified as clonal/early (Fisher’s exact test P=0.03; Extended  exact test P<0.05; Fig. 6b). Collectively, these results suggest that
Data Fig. 9a), while mutations at genes significantly mutated in gli- large-scale copy number alterations occurring early in tumor devel-
oma were more evenly distributed across subclones (56.1% classified ~ opment affect the observed epigenetic and transcriptomic diversity.
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Fig. 6 | Clonal evolution analyses highlight that genetic alterations influence, but do not determine cellular states. a, Examples of phylogenetic trees
constructed from bulk WGS data (mutations and SCNAs) and further annotated using single-cell inferred copy number alterations (scRRBS +scRNA-seq).
The tree nodes represent alterations specific to the given clone, with node size corresponding to the estimated fraction of tumor cells with the associated
alterations. Branch length scales with the number of mutations attributed to that clone. Clonal alterations are colored in blue, with subclonal alterations
colored in gold. Genes significantly mutated in the TCGA analyses? and chromosomal arm-level gain and loss events are presented. b, scRNA-seq-derived
cellular proportions separated by copy number-defined tumor subclone (Extended Data Fig. 3). Reported P values represent a two-sided Fisher's exact test
comparing the cellular state distributions across tumor subclones. ¢, Representative FISH images for IDH WT tumors computationally predicted to harbor
EGFR ecDNA by WGS (n=4 patients). FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes (green), indicating
extrachromosomal status and high variability in copy number status across tumor cells. Scale bars, 10 um. d, Ridge plots of patient SMO12 single-cell
expression of receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined subclones. The reported P values represent
two-sided Wilcoxon rank-sum tests comparing the gene expression of cells across tumor subclones.

Extrachromosomal DNA (ecDNA) elements in IDH WT glio-

mas amplify oncogenes and enhancer elements
heterogenei

1464

%9, We hypothesized that the impact of ecDNA on
genomic heterogeneity extends to fueling epigenetic and transcrip-
tomic diversity*>*’. We detected ecDNAs using WGS and validated

to drive genetic

their presence by FISH (Fig. 6c and Extended Data Fig. 10d,e). EGFR
ecDNAs, like chromosomal arm-level events (for example, chromo-
some 7 amplification in SM001) distinguished subsets of tumor
cells (for example, EGFR ecDNA in SM012) (Fig. 6b and Extended
Data Fig. 10d,e). We classified both scDNAme and RNA profiles as
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ecDNA* or ecDNA™ based on EGFR copy number level (Extended
Data Fig. 10f). ECDNA* cells had increased genome-wide DNAme
in 3 of 4 cases (Wilcoxon rank-sum test P<0.05; Extended Data
Fig. 10g) and greater transcriptional diversity using gene count
signatures compared with ecDNA~ cells (Wilcoxon rank-sum test
P<0.05; Extended Data Fig. 10h and Methods)*'. The tumor with
the highest number of genetic subclones and DNAme disorder
(SM012) contained an EGFR-amplifying ecDNA assigned to sub-
clones 3 and 4, which were marked by differential expression of a
receptor tyrosine kinase gene signature. ecDNA~ subclone 2 was
most closely associated with hypoxia gene expression (Wilcoxon
rank-sum test P<2.2x 107'¢; Fig. 6d), providing an example of how
genetic heterogeneity may shape epigenetic and transcriptional
reprogramming. In summary, our evolutionary analyses show that
intratumoral genetic heterogeneity influences but does not deter-
mine epigenetic or transcriptomic cell states.

External pressures shape adaptive DNAme changes. We next
asked whether epigenetic diversity accelerates tumor evolution by
promoting cell survival in resource-deprived tumor environments
(for example, hypoxia or therapeutic exposures). To address this
question and extend the generalizability of our findings, we ana-
lyzed DNAme profiles from large-scale microarray-based bulk
glioma studies>**?. We inferred a microarray metric from the
scDNAme data that quantified the DNAme disorder-susceptible
gene regions (Fig. 7a). We reasoned that regions prone to DNAme
changes would reflect this stochasticity in bulk data by assuming
intermediate DNAme values (Fig. 7a). This bulk DNAme disorder
metric approximated scDNAme disorder averages across our
cohort (Spearman correlation R=0.65 P=0.02). Applying this
DNAme disorder metric to The Cancer Genome Atlas (TCGA)
data identified differences across TCGA-defined subtypes’, with
IDH WT tumors displaying the highest levels (Kruskal-Wallis
P<2.2x107'% Fig. 7b). Integrating matching DNAme and
RNA-seq samples from 568 TCGA samples showed that high
bulk DNAme disorder samples showed increased transcriptional
activity of oxidative stress response genes, corroborating our ear-
lier positive associations between epigenetic instability and stress
response regulation (Spearman correlation R=0.47, P<2.2X 107",
n =516 IDH mutant initial tumors, R=0.31, P=0.03, n=52, IDH
WT initial tumors).

We next applied the bulk DNAme disorder metric to 119
image-guided stereotactic biopsies taken from spatially distinct
regions across IDH WT (n=>57 biopsies, n=6 patients) and IDH
mutant (n =62 biopsies, n= 8 patients) tumors™. This quantified the
physical distance between each sample and the tumor’s center, based
on specific radiographic features (for example, magnetic resonance
imaging contrast-enhanced region). DNAme disorder was increased
closer to the tumor’s center across IDH WT tumors while adjust-
ing for patient (multivariable linear regression P=0.02; Fig. 7c),
a region frequently characterized by hypoxia. The link between
radiographic features and epigenetic shifts supports the association
between cellular fitness and increased epigenetic plasticity. We did
not observe a consistent relationship between tumor location and
bulk DNAme disorder in IDH mutant tumors (multivariable linear
regression P=0.31; Fig. 7d) where hypoxia is less prevalent.

The environmental pressures that tumors face may vary over
time. We analyzed initial and recurrent tumor samples from the
Glioma Longitudinal AnalySiS (GLASS) consortium for which
DNA sequencing and DNAme data were available (n =102 tumors,
n=>51 patients) to relate DNAme instability to genetic alterations.
We cataloged individual CpG sites where copy number or DNAme
changed between the initial tumor and its matched recurrence.
Opverall, we observed that DNAme changes were mostly decreases
in DNAme consistent with previous findings”* and that DNAme
changes mainly occurred in regions that were copy number-stable
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(Fig. 7¢). We then tested for DNAme changes after treatment while
accounting for differences in cellular composition of the tumor
microenvironment (Methods). We discovered that regions with
consistently altered DNAme independent of changes in micro-
environment cell type distribution were enriched for the binding
site motifs of transcription factors that regulate the cellular stress
response, particularly hypoxia (for example, HIF1A; Fig. 7f). We
also observed the enrichment for differential binding site DNAme
among transcription factors that differed between stem-like and
differentiated-like states in our single-cell data (for example, SP1
and TFAP2A; Figs. 3f and 7f). These observations support our
single-cell findings that regions with the greatest DNAme disor-
der are involved with processes regulating cellular differentiation
and stress signaling. In summary, we find that stochastic DNAme
alterations can provide the variability necessary to enable or
stabilize transition to adaptive epigenetic phenotypes that are
responsive to cellular stress (Fig. 7g).

Discussion

In this study, we integrated multimodal scDNAme and transcrip-
tomic profiles along with bulk profiles to interrogate the association
between epigenetic heterogeneity, genetic alterations, cellular states
and the glioma stress response. We found that early genetic altera-
tions were associated with DNAme disorder, whose accumulation
throughout the genome was linked with altered cellular states and
response to environmental pressures. Elevated DNAme disorder
highlights a mechanism to overcome cell stress, increase cellular
plasticity and ultimately enhance treatment resistance. Taken
together, epigenetic intratumoral heterogeneity provides a plastic
intermediate between genetic subclones and adaptive phenotypic
cell states.

Random errors in the DNAme replication machinery lead to
DNAmedisorderandincreasedintratumoralepigeneticdiversity™**.
We found that genetic and environmental stimuli further exacer-
bate epigenetic variability and hypothesize a convergence for both
stimuli on altered cellular metabolism. Deregulated metabolism is a
hallmark of both IDH mutant, which produce the oncometabolite
2-hydroxyglutarate that interferes with DNA demethylation®*">>~,
and IDH WT glioma where hypoxia is common. Additional genetic
stimuli include broad chromosomal alterations that were positively
associated with DNAme disorder. Through cross-platform evolu-
tionary comparisons, we found that chromosomal alterations are
early events possibly leading to the observed nongenetic diversity
by generating metabolic disruption via active oxygen species’,
thereby increasing the likelihood of aberrant DNAme. Our study
shows that environmental stimuli, such as hypoxia and irradiation,
increase DNAme disorder extending previous studies reporting the
repressed enzymatic activity of DNAme regulators after hypoxia®.
Tumor hypoxia is common across many cancers and could more
broadly shape the phenotype of cells resistant to therapy through
DNAme disorder™. Collectively, increased genomic instability and
resource-poor microenvironments represent stressors that may
explain the greater cell state plasticity in IDH WT relative to IDH
mutant gliomas.

In a non-tumor setting, a cell’s epigenome reflects the tissue of
origin and serves to stabilize cell state-specific gene expression®.
A disrupted epigenetic landscape eroded by DNAme disorder may
facilitate adaptive cell state transitions or increase cellular plasticity’.
Glioma cell states fall along axes of differentiation and proliferating
potential' >, In accordance with previous reports, we observed
pan-glioma malignant cell states that were found within each tumor
and in vitro models. Our single-cell epigenetic profiles revealed that
cell state-defining transcription factor activity may be perturbed
by DNAme disorder. Thus, diverse DNAme marks help to sustain
multiple cell states that each confer their own context-dependent
fitness advantages and together accelerate disease progression.
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Intratumoral heterogeneity in glioma reflects subclonal com-
petition driven by limited nutrient access. While single-cell
transcriptome-based phenotype studies have investigated glioma
transcriptomic heterogeneity'®'>'*'%, we have only limited knowl-
edge on the degree of epigenetic variability. The intratumoral epi-
genetic variation defined in this study provides a link between
subclonal competition and phenotypic state changes by enabling
diverse responses to selective pressures, such as hypoxia and treat-
ment. Future studies are needed to fully elucidate the mechanisms
by which increased DNAme disorder provides competitive advan-
tages under stress. While we identified shared cell states that were
present across different modalities, future studies employing simul-
taneous epigenome/transcriptome characterization will refine these
cellular state classifications and identify additional determinants
that shape glioma cell identity. A better understanding of thera-
peutically vulnerable cell states in glioma will foster development
of more effective therapeutic interventions. In summary, single-cell
epigenetic profiles show that diverse DNAme marks encode cellular
states in glioma, permit cell state plasticity and reflect environmen-
tal stress exposures.
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Methods

Experimental methods. Description of human tumor specimens. Human glioma
resection specimens were obtained with informed consent from the University of
Connecticut Health Center and St. Michael’s Hospital. All tissue donations were
approved by the institutional review board of the Jackson Laboratory and clinical
institutions involved. This work was performed with ethics board approval (no.
2018-NHSR-018) and in accordance with the Declaration of Helsinki principles.
Patients were not compensated for their participation in this research study.
Initial pathological diagnosis was confirmed with tumor DNAme classification
according to the MolecularNeuropathology tool®'. The clinical characteristics of
this population are provided in Supplementary Table 1.

Sample preparation and sorting for the single-cell experiments. Tumor specimens
were collected directly from the operating room and immediately placed

into MACS tissue storage solution at 4°C (catalog no. 130-100-008; Miltenyi
Biotec). Tumor specimens from the same spatial region were then minced and
partitioned into single-cell and bulk fractions (Fig. 1a). Any remaining tumor
tissue was deposited into freezing media consisting of 90% heat-inactivated fetal
bovine serum FBS (Invitrogen) and 10% dimethyl sulfoxide (Sigma-Aldrich),
and gradually frozen in a freezing container (Mr. Frosty; Corning) over 24h
before being stored in liquid nitrogen for future experiments (that is, FISH).
Bulk tissue specimens were immediately flash-frozen for subsequent DNA and
RNA extraction. The specimen fraction for single-cell analyses was further
mechanically and enzymatically dissociated using the Brain Tumor Dissociation
Kit (P) according to the manufacturer’s protocol (catalog no. 130-095-942;
Miltenyi Biotec)'"'*!°.

Single-cell suspensions were blocked with human BD Fc Block (BD
Biosciences) for 5min on ice before antibody staining and labeled via incubation
with 1:100 dilution of Alexa Fluor 488-conjugated anti-CD45 antibody (catalog no.
304017; BioLegend) and 1:100 dilution of PECy7-conjugated anti-CD31 antibody
(catalog no. 303117; BioLegend) for 30 min at 4 °C. Cells were washed with Hank’s
buffered saline solution (HBSS) and resuspended in 2mM of EDTA/2% BSA/
PBS buffer containing 2 ugml™" of propidium iodide (PI) (catalog no. 556364; BD
Biosciences) and 1 puM of calcein violet (Invitrogen) for 20 min at 4°C. FACS was
performed using a BD FACSAria Fusion instrument with a 130-um nozzle and
using the lowest event rate. Single-cell mode was selected to further ensure the
stringency of sorting. Fluorescence compensation and FACS data visualization
was performed using FlowJo v.10.3 (https://www.flowjo.com/). For the generation
of 10x sequencing libraries, 50,000-150,000 PI-, calcein* viable single cells were
collected in 20% FBS/HBSS buffer. CD45" cells were limited to no more than 20%
of the total viable sort to enrich for tumor cells (Extended Data Fig. 2a). For the
generation of scDNAme libraries, we sorted viable (PI- and calcein*), non-immune
(CD457), and non-endothelial (CD31-) cells into 96-well plates that were
preloaded with 5l of 1x Tris-EDTA buffer (Extended Data Fig. 2a). Once cells
had been sorted, the 96-well plates were either immediately processed through the
scDNAme protocol or frozen and stored at —80°C.

scRRBS library preparation. scDNAme profiling was performed using a modified
version of a previous scRRBS protocol’*. The scDNAme experiments were
performed with sorted viable, non-immune, non-endothelial (PI-, calcein*, CD45",
CD31") cells in a 96-well plate containing 5 ul of preloaded Tris-EDTA buffer with
an empty well control. For 9 out of 11 tumors, the protocol was also applied to a
small control population of 50 cells (PI-, calcein*, CD45~, CD31"). Sorted 96-well
plates were frozen at —80 °C until processing when cells were lysed with 0.2 ul of

1 M of KCl (Sigma-Aldrich), 0.2 ul of 10% Triton X-100 (Sigma-Aldrich), 0.3 ul

of 20mgml~ of protease (QIAGEN) and nuclease-free water in a total volume of
6l for 3h at 50 °C. The protease was then heat-inactivated at 75 °C for 15 min.
The DNA was incubated with 50 units of MspI (New England Biolabs) and Taql
(New England Biolabs) with CutSmart Buffer (New England Biolabs) for 3h at
37°G; 60 fg of unmethylated bacteriophage lambda DNA (Promega Corporation)
was added to each well to serve as a control for bisulfite conversion efficiency
assessment. The solution was heated to 80 °C for 20 min to heat-inactivate the
restriction enzymes and placed on ice. Five units of Klenow fragment (3'— 5’
exo-; New England Biolabs), CutSmart Buffer and end-repair deoxynucleoside
triphosphate (ANTP) mix (40 uM of dATP, 4 uM of dGTP and 4 puM of dCTP; New
England Biolabs) totaling 2 pl per reaction were added to perform end-repair and
dA-tailing. Then, 1:250x diluted NEXTflex methylated adapters (Bioo Scientific)
were added to each quadrant of the 96-well plate (n =24 unique adapters) with

a ligation mixture of 40 Weiss U T4 ligase (New England Biolabs), 1 mM of ATP
(Thermo Fisher Scientific) and nuclease-free water to a final volume of 4 pl per
reaction. TruSeq methylated adapters (Illumina) were also used in one sample
(SM001) using the same protocol. The ligation reaction proceeded at 16°C

for 30 min followed by incubation at 4°C for at least 8 h. The ligation reaction

was stopped by heat-inactivation at 65°C for 20 min. After adapter ligation,

24 individual cells with unique ligated adapters were pooled from each plate
quadrant for the protocol’s remainder. Excess adapter was removed using a 1:1
volumetric ratio of AMPure beads (Beckman Coulter). Bisulfite conversion was
performed using the EZ DNA methylation kit (Zymo Research) according to the
manufacturer’s instructions except with one-half volumes due to reduced DNA

NATURE GENETICS | www.nature.com/naturegenetics

input. The solution was incubated at 98 °C for 8 min, 64 °C for 3.5h and held at
4°C once the reaction was complete. Then, 10 ng of transfer RNA (Roche) was
added before column elution to serve as a protective carrier. PCR enrichment was
performed using the PfuTurbo Cx HotStart (Agilent Technologies), PfuTurbo

Cx HotStart Buffer (Agilent Technologies), primer mix (Bioo Scientific), ANTP
mix (Promega Corporation) and nuclease-free water under the following
conditions: 95°C for 2 min, 32 cycles at 95°C for 205, 60 °C for 30s and 72°C

for 60s. The PCR reaction was terminated by incubating at 72 °C for 5min. The
libraries were purified in a 1:1 volumetric ratio of AMPure beads. Pippin size
selection was performed between 200 and 1,000 base pairs (bp) (Sage Science)
and quantified by quantitative PCR (qPCR) (Kapa Biosystems). scRRBS libraries
were paired-end-sequenced alongside bulk whole-genome libraries on an Illumina
HiSeq 4000 using 1% PhiX spike-in and 75-bp reads.

scRNA library preparation. Sorted cells were washed and resuspended in 0.04%
BSA/PBS buffer. Cells were counted on a Countess 2 automated cell counter and
were loaded on a Chromium chip with a target cell recovery of 6,000 cells per lane.
Sequencing libraries were performed using the single-cell 3’ messenger RNA kit
according to the manufacturer’s protocol (10x Genomics). Complementary DNA
and library quality were examined on a 4200 TapeStation (Agilent Technologies)
and quantified by gPCR (Kapa Biosystems). Illumina sequencing (NovaSeq) was
performed using a paired-end 100-bp protocol. Libraries were sequenced to a
median depth of 50,000 unique reads per cell.

WGS of tumors and matched normal blood. Genomic DNA was extracted from

the same tumor region as the single-cell analyses using the QIAGEN AllPrep kit
and matched to normal blood using the DNeasy kit (QIAGEN). Briefly, 400 ng

of DNA was sheared to 400 bp using an LE220 focused-ultrasonicator (Covaris)
and size-selected using Solid Phase Reversible Immobilization beads (Beckman
Coulter). The fragments were treated with end-repair A-tailing and ligation of
unique adapters (Illumina) using the KAPA mRNA HyperPrep Kit (Roche). This
was followed by five cycles of PCR amplification. DNA sequencing was performed
using a paired-end 75-bp protocol according to the manufacturer’s instructions
(Illumina HiSeq 4000). Tumor samples were sequenced to an average depth of 44x;
tumor-matched normal blood was sequenced to an average depth of 30x.

Bulk Illumina EPIC DNAme microarrays. A total of 250 ng of genomic tumor
DNA was subjected to bisulfite conversion using the EZ DNA methylation
kit (Zymo Research) and genome-wide DNAme was assessed by the Infinium
MethylationEPIC Kit according to the manufacturer’s protocol (Illumina).

Bulk RNA-seq. Bulk tumor RNA was extracted from samples with sufficient tissue
using the AllPrep kit. Samples with RNA integrity number values > 5 as assessed by
TapeStation were prepared with the KAPA mRNA HyperPrep Kit. Libraries were
sequenced using a paired-end 150-bp protocol on a NovaSeq system to 50 million
reads according to the manufacturer’s protocol (Illumina).

FISH analysis. Tissue slides were prepared by tumor touch prep method*.
Positively charged glass slides were pressed against the surface of thawed frozen
tissues. The slides were then immediately fixed by cold Carnoy’s fixative (3:1
methanol:glacial acetic acid v/v) for 30 min and then air-dried. Slides were
denatured in hybridization buffer (Empire Genomics) mixed with EGFR-Chr7
probe (EGFR-CHRO07-20-ORGR; Empire Genomics) at 75°C for 5min and

then incubated at 37 °C overnight. The posthybridization wash was with 0.4x
saline-sodium citrate at 75 °C for 3 min followed by a second wash with 2x
saline-sodium citrate/0.05% Tween 20 for 1 min. The slides were then briefly
rinsed with water and air-dried. The VECTASHIELD mounting medium with
4',6-diamidino-2-phenylindole (Vector Laboratories) was applied and the coverslip
was mounted onto a glass slide. Tissue images were scanned under a Leica STED
3X/DLS confocal microscope with 100X magnification.

Glioma sphere-forming cell lines and in vitro perturbations. Patient-derived IDH
WT spheroids (HF2354 and HF3016) were cultured in neurosphere medium
(NMGF): 500 ml of DMEM/F-12 medium (catalog no. 11330032; Gibco)
supplemented with N-2 (catalog no. 17502-048; Gibco), 250 mg of BSA (catalog
no. A4919; Sigma-Aldrich), 12.5 mg of gentamicin reagent (catalog no. 15710-
064; Gibco), 2.5 ml of antibiotic/antimycotic (Invitrogen), 20 ngml™' of EGF
(catalog no. AF-100-15; PeproTech) and 20 ngml~ of bFGF (catalog no. 100-
18B; PeproTech). Previous comprehensive characterization of patient tumor and
matched patient-derived spheroids demonstrated faithful propagation of genomic
and transcriptomic profiles to the cell lines*.

To induce hypoxia, glioma cells were cultured in hypoxia chambers (Thermo
Fisher Scientific) under atmospheric normoxic (21% O,) and hypoxic (2 and
1% O,) conditions. Cells assayed at the 3-d time point were cultured under the
three different oxygen conditions (1 =4 per group). The 9-d time point data were
restricted to 21 and 1% (n=6 per group) after observing oxygen concentration
dosage effects at 3-d (Extended Data Fig. 9a,b). The 3 and 9-d time points were
selected due to the 2-3-d doubling time of these cell lines. Irradiation was delivered
using the Gammacell 1000A Blood Irradiator (Atomic Energy of Canada Limited)
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at a daily dose of 2.5 Gy for 4 consecutive days for a total of 10 Gy followed by a
recovery period of 5d*. Irradiated cells were collected at the 9-d time point (n=6
per group). DNA and RNA for all conditions were isolated using the AllPrep DNA/
RNA Mini Kit (QIAGEN).

Patient-derived spheroid candidate gene expression. Real-time PCR was performed
with primers specific for candidate cell state (SOX2, POU5F1I), stress response
(JUN) and hypoxia marker genes (EPASI (HIF2A) and VEGFA) at the 3-d time
point. Relative gene expression was normalized to the housekeeping genes ACTB
and B2M. All primers were purchased from Integrated DNA Technologies. Primer
sequences are provided in Supplementary Table 5.

Cell line RRBS. Sequencing library preparation was performed using the Premium
RRBS Kit (catalog no. C02030033; Diagenode) according to the manufacturer’s
protocol. Libraries were sequenced on a NovaSeq 6000 using a paired-end 2x 100
strategy for all replicates (1 =60). The mean sequencing depth was 38 million reads
per sample.

Patient-derived cell line scRNA-seq. For each cell line and time point, both a
perturbed (that is, hypoxia and irradiated) and a control replicate were dissociated
into single cells for single-cell gene expression profiling. Briefly, cells were collected
at the 3 and 9-d time points for the hypoxia experiments and the 9-d time point for
the irradiation experiments. To minimize batch effects when comparing perturbed
and control conditions, cells were labeled with oligonucleotide-tagged antibodies,
flow sorted to enrich for viable cells and multiplexed on the same 10x Chromium
lane (10x Genomics)®. Libraries were sequenced using the single-cell 3" mRNA kit
in the same manner described for the patient tumor specimens.

Analytical methods. Single-cell and cell line DNAme processing. Raw sequencing
reads were trimmed to remove adapters and low-quality bases using TrimGalore
v.0.4.0 with the --rrbs and --paired parameters (https://github.com/FelixKrueger/
TrimGalore). The trimmed reads were then aligned to the GRCh37 (hg19)

genome using Bismark v.0.19.1 with the parameters -N 1 --bowtie2 --score_min
L,0,-0.4 (ref. **). For single-cell data, PCR duplicates were removed with the
deduplicate_bismark command. Bisulfite conversion efficiency was determined
using the spike-in unmethylated lambda DNA. For single-cell data, cells with fewer
than 40,000 unique CpGs detected and bisulfite conversion rates below 95% were
removed from the analysis. A total of 914 single cells were retained for downstream
analysis (n =914 out of 1,076 total cells sequenced) with a mean of 145,000 CpGs
per cell and mean bisulfite conversion rate of 98.4% (Supplementary Table 6). All
60 cell line RRBS samples were retained for downstream analysis, with a mean of
10,228,198 unique CpGs per sample and a mean bisulfite conversion rate of 98.9%
(Supplementary Table 7).

Unsupervised clustering of scRRBS data. Unsupervised clustering of the
DNAme data was performed using pairwise comparisons of individual

CpGs across all cell-cell comparisons (PDclust, v.0.1.0)*". Briefly, this method
performs pairwise comparisons of single-CpG methylation measurements

to create a pairwise dissimilarity value that reflects the average absolute
difference in methylation values at CpGs covered in any two cells. The pairwise
dissimilarity values were used as input features for the MDS analysis for which
visualization of cells in close proximity reflected greater similarity than cells
further apart (Fig. 1b).

DNAme disorder as a measure of epigenome instability. DNAme disorder was
determined by identifying DNAme concordance of nearby CpGs on a single
sequencing read for bulk and scDNAme data'****. Briefly, for a sequencing read
to be considered for this analysis, it required a minimum of four CpGs located

on the same sequencing read. Sequencing reads containing at least four CpGs,
referred to as ‘epialleles, were extracted from aligned BAM files using SAMtools
v.1.9 (ref. ©°) for downstream analysis. An epiallele was considered discordant if any
of the CpGs on that sequencing read had different methylation states (for example,
three methylated CpGs and an unmethylated CpG). The DNAme disorder metric
reflects the sum of discordant epialleles divided by the total number of epialleles
considered for analysis (that is, the proportion of discordant reads)'****. The
DNAme disorder metric can be calculated across the entire genome (that is,
DNAme disorder) or restricted to specific genomic regions where the metric
considers only the epialleles overlapping that particular genomic context. A
linear regression model was used to assess the impact of the total number of
epialleles considered for analysis on the DNAme disorder. The DNAme disorder
metric was very weakly associated with epiallele count in that an additional
10,000 epialleles were associated with an 0.001 increase in the DNAme disorder
metric. For the analyses associating DNAme disorder with metrics derived from
bulk WGS data, the sample-level DNAme disorder was calculated as the median
of the scDNAme disorder values. For the analyses of the patient-derived cell

line RRBS data, DNAme disorder was calculated separately for each CpG by
determining the proportion of discordant reads overlapping the given CpG. CpGs
with a sequencing depth less than 20X or at least 100 times the 95th percentile of
sequencing depth were excluded from analysis.

DNAme and DNAme disorder over genomic annotations. To determine
region-specific DNAme or DNAme disorder, measured CpGs or epialleles were
intersected with the genomic coordinates of interest before methylation value or
DNAme disorder calculation, respectively. For the analyses of patient-derived cell
line RRBS data, region-specific DNAme disorder was calculated as the weighted
average of per-CpG DNAme disorder values, with weights proportional to
sequencing depth. All coordinates were mapped against the hg19 human genome
assembly. Regions of interest considered for the analyses included CGls, adjacent
CGI shores, promoter, gene body, intergenic, Alu repeat, normal cell-specific
CTCF and EZH2 binding sites (ENCODE: normal human astrocyte and H1
embryonic stem cells), DNase I hypersensitivity regions, TFBS motifs, replication
timing domains and 5 and 10kilobase (kb) tiled regions. CGI shores were defined
as +2kb from the CGI. Promoters were defined as 1kb upstream and 500 bp
downstream of FANTOMS (ref. 7). Transcription start sites (TSS) were mapped

to Ensembl release 96 genes. If multiple TSS mapped to a given gene, the TSS with
the lowest genomic coordinate was selected. Gene body annotations were obtained
from the Ensembl Genome Browser, release 96°. Intergenic regions were annotated
by selecting regions not overlapping Ensembl gene body coordinates. DNase

T hypersensitivity region annotations were obtained from the UCSC Genome
Browser database, 2019 update®. TFBS motifs were obtained from the JASPAR
2020 Core Vertebrate database” of nonredundant transcription factor binding
motifs. Each binding site was assigned a score of 0-1,000, which corresponded to
the P value for the relative position weight matrix score of a TFBS motif prediction.
For a given transcription factor, all identified target binding site coordinates were
aggregated; binding sites were excluded if they had a relative score of less than

400, corresponding to P> 0.0001, or if any binding site lacked a CpG dinucleotide.
TFBS motif DNAme disorder analyses required that a given epiallele included at
least one CpG overlapping the TFBS motif; subsequently, epialleles considered for
analysis included both CpGs within and adjacent to the motif. Analysis of DNAme
disorder grouping CpGs by whether they lay at or adjacent to motifs revealed
consistent DNAme disorder across epialleles overlapping TFBS motifs. Replication
timing of genes was retrieved from MutSigCV v.1.0" and gene-specific annotations
for the replication timing domains were generated by binning gene coordinates
into quartiles based on the replication timing score. Methylation values were also
calculated for nonoverlapping windows of 5 or 10kb. The ranks of high DNAme
disorder levels were determined with the ROSE software (https://bitbucket.org/
young_computation/rose) for both gene-level and TFBS.

SCNA estimation from scDNAme data. To provide evidence for SCNAs in
scDNAme sequencing data, the Gingko algorithm’ was applied to single cells that
passed the scRRBS quality control filters mentioned above. Briefly, this method
bins mapped reads by chromosomal location, performs Lowess normalization to
correct for GC biases, adjusts for potential amplification artifacts and segments the
genome to determine chromosomal regions with consistent copy number states.
In this study, the genome for each sample was divided into 2,597 variable-length
bins with a median length of 1 megabase. Segmentation was performed using
independent normalized read counts and the parameter mask bad bins (that is,
bins with consistent pileups) was enabled. Cells were considered non-tumor if
<1% of the genome had a copy number state that was not 2. Copy number plots
were generated using the R package gplots v.3.0.1.1. Hierarchical clustering and
annotation of single-cell SCNA profiles was performed using the dendextend
v.1.13.4. R package™.

scRNA processing and analysis. The Cell Ranger pipeline v.3.0.2 was used to convert
Tllumina base call files to FASTQ files and align FASTQs to the hg19 10x reference
genome v.1.2.0. Preprocessing was performed using the Scanpy package v.1.3.7
(ref. 7*). The gene expression profiles of each cell at the 1,500 most highly variable
genes (as measured by dispersion’) were used for neighborhood graph generation
(using 33 nearest neighbors) and dimensionality reduction with uniform manifold
approximation and projection (UMAP)’. Clustering was performed on this
neighborhood graph using the Leiden community detection algorithm’. The
neighborhood graph was batch-corrected using the batch correction software
BBKNN v.1.2.07. These defined clusters were then labeled with particular cell
states based on marker gene expression and previously described cell states'®''%.
A similar analytical framework was also applied to each of the two patient-derived
spheroid scRNA-seq datasets, each using a different number of most variable
genes and nearest neighbors. Cell state classification of malignant cells was also
performed using previously developed classifiers for both IDH WT'' and IDH
mutant tumors'®. The Seurat R package, v.3.1.1, was used for downstream analyses
and visualizations™. Inference of gene regulatory networks was performed

using SCENIC, v.1.1.2-2, for a random set of 5,000 cells per analysis, with only
9-d stress cells presented in Extended Data Fig. 8d-f7. SCNA estimation from
scRNA-seq data was performed using InferCNV v.1.6.0 (refs. '"'*'*). Briefly,

the InferCNV method provides evidence for large-scale SCNAs by comparing
averaged gene expression intensity values with non-tumor cells (based on marker
gene expression) from the same specimen. Subclusters of cells were partitioned
into clones on the basis of shared copy number patterns (https://github.com/
broadinstitute/inferCNV). Single-cell gene set activity was determined using
AUCell v.1.12.0 (ref. 7). scRNA diversity comparisons using gene count signatures
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were performed using the R package CytoTRACE v.0.1.0 across cells from the same
tumor clone®'.

Joint scRNA and scDNAme integration. scRNA and DNAme malignant cell profiles
were integrated within the same specimen by jointly clustering gene expression
with gene-level methylation features using the R package liger v.0.4.2 (ref. **).

Analysis of publicly available brain tumor DNAme data. Data reanalysis of
longitudinal glioma resources was accessed for Klughammer et al.” (http://www.
medical-epigenomics.org/papers/ GBMatch/) and GLASS (http://synapse.org/
glass)’. Magnetic resonance imaging-guided biopsies taken from spatially distinct
regions and subjected to bulk DNAme Illumina methylation microarray collected
by our group can be accessed at EGAS00001005434 (ref. **). DNAme microarrays
(HumanMethylation450 BeadChip) were retrieved from the TCGA initial

glioma samples”. All Illumina methylation microarrays were processed using

the R package minfi v.1.30.0. The recurrent DNAme changes between the initial
and recurrent tumors were determined by fitting a linear mixed effect model (R
nlme package v.3.1-140) to each individual CpG modeled as a logit-transformed
M-value with independent variables of time point, subtype, cancer cell proportion,
immune proportion and patient included as the random effect. The cancer and
immune cell proportions in the GLASS bulk Illumina methylation microarray data
were determined using the glioma signature in the R package Methyl CIBERSORT
v.0.2.0 (ref. %).

Gene and genomic region enrichment analyses. Enrichment of genes were
performed using the R package topGO v.2.42.0. Enrichment of genomic regions
was determined using the Locus Overlap Analysis (LOLA) v.1.14.0 R package®'.
LOLA enrichment analyses used all features considered for analysis as the
background sets.

Variant detection and copy number calling. Variant detection and bulk copy number
determination was performed in accordance with the Genome Analysis Toolkit
(GATK) best practices using GATK v.4.1.0.0 (Mutect2). Bulk tissue sequencing
computational pipelines were developed using snakemake v.5.2.2 (ref. *2).

Mutational signature identification. Mutational signatures were identified in

bulk WGS samples using the MutationalPatterns R package v.1.10.0 (ref. *°). The
trinucleotide context of single base substitutions was extracted for each sample

to construct a mutational profile. For each mutational profile, the contribution of
mutational signatures from the Catalogue of Somatic Mutations in Cancer v3 was
quantified. Known signatures were ranked by order of relative contribution to the
sample mutational profile; for visualization, the top five signatures per sample were
listed, with the remaining signatures collapsed into an ‘Other’ category.

Phylogenetic reconstruction bulk WGS clonality. To reconstruct the evolutionary
history and subclonal composition of tumors, PhyloWGS v.1.0-rc2 (ref. *)

was applied to the bulk WGS samples. PhyloWGS incorporates SCNAs with
simple somatic mutations in inferred phylogenies by converting SCNAs into
pseudo-simple somatic mutations before subclonal reconstruction. For input,
PhyloWGS requires VCF format variant calls, SCNA segments and estimates

of tumor purity, which were generated using Mutect2 v.4.1.0.0 (ref. '), TITAN
v.1.19.1 (ref. *°) and Sequenza v.2.1.2 (ref. °), respectively. If a tumor contained
more than 5,000 variants, input variants were subsampled to 5,000, ensuring that
all variants overlapping previously identified, significantly mutated genes were
included*. For each PhyloWGS run, multiple Markov chain Monte Carlo chains
were initiated with differing start values; the optimum solution was selected based
on negative normalized log-likelihood. Cancer cell fractions were calculated for
each tumor subpopulation as the cellular prevalence for a given subpopulation
divided by the maximum cellular prevalence for that tumor, which corresponds
to the estimated tumor purity. Events were defined as clonal if they had a cancer
cell fraction of 1 or subclonal otherwise. SCNA subpopulation assignments and
cellular prevalence estimates derived from PhyloWGS were further informed by
scRNA-seq and scRRBS-derived copy number profiles.

Bulk RNA-seq processing. FASTQ files were preprocessed with fastp v.0.20.0 to
assess quality control and were aligned to the hg19 genome using kallisto v.0.46.0
with default parameters®. The bulk RNA Verhaak classification and simplicity
scores were determined using the ssGSEA.GBM.classification v.1.0 R package®.
Single-sample gene set enrichment analysis for particular pathways was performed
using the GVSA v.1.32.0 R package®.

Detection of extrachromosomal DNA. Amplicon architect (the version used in
original paper®’) was used to detect extrachromosomal DNA in tumor WGS
data. Briefly, this method characterizes the architecture of amplified regions
that are larger than 10 kb and have more than 4 copies greater than the median
sample ploidy.

DNAme-based tumor classification. Probabilistic estimates of tumor classification
were defined by the MolecularNeuropathology classification tool v.11b4 (ref. ©').
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Statistics and reproducibility. All data analyses were conducted in R v.3.6.1.
Statistical analyses are described in the respective Methods subsections and are
briefly described in the figure legends. P values were false discovery rate-corrected
for multiple hypotheses testing where indicated. For box plot representations,

data points located outside the whisker plots are not shown to aid readability

but are included in the statistical analyses. No statistical methods were used to
predetermine study sample size. Data subsets are explicitly mentioned when

used. The experiments were not randomized. The investigators were not blinded
to allocation during the experiments and outcome assessment. P < 0.05 was
considered statistically significant.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All de-identified, nonprotected access somatic variant calls, single-cell gene
expression profiles, regional scDNAme data and scDNAme disorder data are
accessible via Synapse (https://synapse.org/singlecellglioma). Raw bulk and
single-cell sequencing data and methylation microarray data are available through
the European Genome-phenome Archive under accession no. EGAS00001005300.
The GRCh37 (hgl9) reference genome was obtained from GATK (https://gatk.
broadinstitute.org/).

Code availability

Major analysis scripts are available on GitHub (https://github.com/
TheJacksonLaboratory/singlecellglioma-verhaaklab) and Zenodo (https://doi.
org/10.5281/zen0do.4967364).
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Extended Data Fig. 1| Integrated molecular profiles of patient samples. Each patient is in a single column with data presented to indicate clinical features
(top), followed by genetic alterations defined from bulk whole genome sequencing data, bulk RNA sequencing based subtype classification probabilities
(Wang et al., n = 8 available), single-cell RNA tumor cellular state proportions, bulk DNAme microarray subtype classification probabilities (Capper et al.),
and boxplots of single-cell DNAme disorder with samples colored by clinical timepoint. Each box spans the 25" and 75 percentile, center lines indicate
the median, and the whiskers represent the absolute range (minima/maxima), excluding outliers.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

TICLES

NATURE GENETICS

a
Pl negative Calcein Violet * » CD31-
12
- v
£ 80%
o
2 w0
E < g <
"2 uo) g 40 . 8 0K
w o O ] @
od L] 1
10° ! 10? 10° 10* 10° 0 10? 1wt o 10° 1t
Propidium lodide (PI) Calcein Violet —— CD31-PE-Cy7 CD45-AF488
Interpretation:  PlI- singlets PI- and Calcein+ singlets Stain for CD31 (endothelial) CD45-/CD31- only [:wJ> SoRRBS input
(viable single cells) and CD45 (pan-immune) CD45-
D45+, and CD31+ > 10X input
b CpG distribution per single cell N . . X d
Single-cell DNA methylation profile
cell_id: SCGP-SM-019-01D-S5M-78S5
150 120000 (cell ) 3e+05
o
E]
= 3
s 1004 Threshold for 90000 3 20405
3 cell inclusion g 2
3 ] 5
o 3 -
° g 60000 3
E’ = « 1e+05
& 50 8“ &
30000 é é
0e+00 e
a —_ P N
0 T T T T T 0 i w QQ'(\\Q 3 “00& %‘2“9 (0%0\ & %‘2&) @6@ & 6\0@\
06400 26405 46405 66405 8e+05 5 > % 7 0 & @ ° /‘gg,\ /\gg,\ S /\(5& & )
Unique CpGs DNA methylation percentage (%) < <& )
e f 15000 14,333
80000- E Promoter  190%°
! intersection
2 ; number 2534 2,100
8 : 0 . e .
g 60000- ' SM004 o
2 ' SM001 [ —
% ' Mean overlap = 7,855 CpGs B % SMO15 =N |
§40000 e % SMO19 pa——
o =
§ 23 SM002 /
g $5  swmoos E—]
= o
w ol
20000 g 2 SMO006 (|
£ smoi2 i —
&8 smot7 —
o SMo18 —
' SMo11 |
0 10000 20000 30000 40000 50000 iy e
Cell-to—cell single CpG overlap i 888
Promoter number
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Somatic copy number alteration examples estimated from whole genome sequencing, single-cell Reduced Representation
Bisulfite Sequencing, and single-cell RNA-sequencing. a-c, Representative images of copy number alterations derived from SM0O12 (IDHwt initial) whole
genome sequencing (WGS) data. a, Depth ratio for each segment with copy number status determined as compared with germline (normal blood) WGS
data. b, SM012 Single-cell DNAme-based copy number estimates (n = 69 tumor cells) with copy number integer depicted by color (blue = CN loss,
white = neutral CN, and red = CN gain). Each row is a single cell with annotation for DNAme disorder provided. ¢, SM012 Single-cell RNAseq based copy
number inference (n = 5,489) identifying major copy number events found in WGS with labelled subclones as presented in Fig. 6a. d-f, Similar example
profiles as presented in a-c, for tumor sample SM006 (IDHwt initial, n = 82 scRRBS cells, n = 3,310 scRNAseq cells). g-i, Similar example profiles as
presented in a-c for tumor sample SMOO1 (IDHmut recurrence, n = 181 scRRBS cells, n = 5,713 scRNAseq cells).
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Extended Data Fig. 4 | Distribution and relationship of DNAme and DNAme disorder throughout the glioma genome. a, Visualization of inter-tumoral
and intra-tumoral variation in DNAme (10 kb tiled DNAme). Genome-level and chromosome-level DNAme across 844 single tumor cells. Each row
represents a single cell clustered based on pairwise dissimilarity between methylomes as presented in main Fig. 1b and each column represents a single
10 kb tile over which DNAme has been averaged as indicated by heatmap color (methylated = red, unmethylated = blue). The tile color for a cell that does
not have a measurement for a given tile is represented by white and a tile without a measurement across any cells is represented by grey. Row annotation
both patient identifier and IDH mutation status are presented for each cell. b, Boxplots highlighting the single-cell DNAme disorder estimates calculated
across different genomic contexts with Kruskal-Wallis p-values indicating the differences in distributions across the groups. Each box spans the 25t and
75% percentile, center lines indicate the median, and the whiskers represent the absolute range (minima/maxima), excluding outliers. ¢, The dominant
Catalogue of Somatic Mutations in Cancer (COSMIC v3) mutational signatures are presented for each subject. The stacked bar plots represent the relative
contribution of each mutational signature to the tumor’'s mutational burden. Colors indicate distinct mutational signatures, which are further annotated
with their proposed etiology. d, Scatterplots and linear regression lines with standard error showing the relationship between genomic context-specific
single-cell DNAme disorder (sample-specific scRRBS average) and genomic context-specific mutation burden derived from whole genome sequencing
(n=10 excluding hypermutant sample). Panels are separated into global (that is, all regions), promoter, gene body, and intergenic regions (Spearman
correlations p> 0.05 for all comparisons). e, Scatterplot of the context-specific DNAme disorder (x-axis) vs. the average DNAme value (beta-value) for
each genomic compartment. Subtype level Spearman correlation coefficients and p-values are presented. f, The median absolute deviation of DNAme
across all cells from the same subtype (inter-patient heterogeneity) and g, all cells from the same patient (intra-patient heterogeneity). Two-sided
Wilcoxon rank sum tests comparing median absolute deviation levels between IDHmut and IDHwt are presented for intra-patient DNAme heterogeneity.
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Extended Data Fig. 5 | Association between DNAme disorder and disrupted transcriptional programs. a, Boxplots of gene expression values, in
log(counts per million+1), from single-cell RNAseq data across different sets of gene body regions defined by gene-derived DNAme disorder groups.
Each box spans the 25 and 75 percentile, center lines indicate the median, and the whiskers represent the absolute range (minima/maxima), excluding
outliers. Surrounding violins represent the distribution for each group. Gene DNAme disorder groups are defined by the determining the mean DNAme
disorder value across a single gene. Color indicates IDHT mutation status. b-c, Scatterplots depicting single-cell gene-level DNAme disorder average
plotted against the gene-level methylation estimates in both b, promoter regions and ¢, gene body regions. d-e, Gene Ontology enrichment analyses
with false discovery rate correction for high DNAme genes and low DNAme disorder genes using gene body estimates. f, Representative density curves
of distribution of epiallele CpGs in each patient overlapping a specific TFBS motif (for example, SOX2), with curves annotated by patient identifier.

g, Gene Ontology enrichment analysis of TFs with high DNAme disorder in their binding sites with false discovery rate correction. h, Scatterplot depicting
the association between average single-cell DNAme disorder estimate and single-sample Gene Set Enrichment Score for stress response, hypoxia, and
random genes from bulk RNAseq data. Spearman correlation coefficient and p-values are indicated.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

NATURE GENETICS ARTICLES

10X all cells (n = 55,284 cells) Average gene expression by cell state (n = 55,284 cells)

soxz 5
= o2 W
oLiG2 5
Y YR N
AscL1 4
Tomsill|||| L
4 Subject RPINE N S S S
) Immune cells © smoot liﬁ R
Pericytes and ~ " ® SM002 Agpa S
endothelial cells g 3 ® SM004 P | | [ R I
e : s | & A L1 [
’ SM008 :
Tumor cells ° Mo S
o swort L1 Q Lo
® SMo12 FBLN1 5
® SMo15 L1l 1o . \
® sMo17 CLONG &
® SMoi8 pon 6 I I | ? | L
© swmo1e S Rad ]
L1 ? TR
$10049 7
e R
.. cpsp 4
Fib )l‘)l ! HLA-DPB16 | ! L
ibroblasts -
o~ L1111 40T
% cpt4 6
s c1QA6|||4L"lll _Lg
= Ll b 1 1A%
L @ @ S S S @ S &
UMAP 1 SN TG P F P P
o N @ S &N
LA ¢ < & 2 &
& -q"b S
c d < [
IDHmut IDHwt
IDHmut IDHwt © 1.00
1.00 I & Pan-glioma state
._ ! - Non-tumor cell state g 0.75 Diff.—like
|| B oiigodendrocyte £ I stem-iie
£0.75{m= = Fiby £ 0.50 .
S roblast 5 . Prolif. stem-like
2 Pericyte g 0.25
3 Endothelial g
§0%° B cel @ 0.00 L NeftelVentei
S el 91.00 f— class
§ M e ko] . W Astro-iie
& 025 Granulocyte 2075 Oligo-like
B oendritic cel e
) £ Bl unditerentiated
B myeloid 2050 B vese
0.00 3
R0 QD DA RN 5025 AC-like
\3@@@ \‘9\\\\ & @00 S \@\ @0'\ @" \@\ g B orcoike
PP PS> D & 0.00 = = N
& SR
S LFLES & &S
N Y &Y Y & Y ¥ Y &
e 10X IDHmut tumor cells 10X IDHwt tumor cells f
(n =11,301 cells) (n = 19,530 cells) Respcnsems!ress Hypoxia (Elvidge) Random
3 p<2.22016 p<zzze_16
OPC-like =3 5
oo 2 S
z NPC-like ZE, 4-* ¢> ** -5
5 | Stem-ike S 58
£ Undifferentiated N\ 2 <
E] i 38 _017 <2229—16 _249-05
2 MES-like 82| —53me —os2tets
£ Diff.—like 55 _
g . gse g
o AC-like 2 3 g
Astro—like 1 ++¢
| | | 1 | | |
Pan-glioma Venteicher Pan-glioma Neftel
Pan-glioma B proi stem-like [B Stem-ike  |Ed Diff-like
cell state (n="556 IDHmut,  (n=8,227 IDHmut, (n=2,518 IDHmut,
9 n=3004 DHWY)  n=2,417 IDHWt)  n=14,019 IDHwWY)
IDHmut (scDNAme) IDHwt (scDNAme)
" Kolmogorov—Smirnov i Kolmogorov—Smirnov
" i
5 " Diff vs. Stem p=0.66 o Diff vs. Stem p=0.93
. Diff vs. Polif. stem p=0.92 H Diff vs. Polif. stem p=0.68
' 10 '
| i
\
510 5
[ [
[ [
a a
5
5
0 i 0 i
0.2 03 04 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.7
TFBS motif DNAme disorder (DNAme) TFBS motif DNAme disorder (DNAme)
High TF activity per cell state (RNA) High TF activity per cell state (RNA)
Cell state [_] Dift—like ] Prolt. stem-iike [] Stem-iike Cell state [_] Dit—tike [J] Proli. stem-iike [] Stem-iike

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pan-glioma cell state assignment and characteristics. a, UMAP dimensionality reduction plot of all scRNAseq data, including
tumor and non-tumor cells (n = 55,248 cells). Each dot depicts a single cell and colors represent the tumor of origin. Shaded regions represent cell state
classification. b, Stacked violin plots of average single-cell gene expression for cells presented in Supplementary Fig. 6a. Selected genes presented are
informative for cell state classification. ¢, Stacked bar plots representing the proportion of non-tumor cellular states d, Stacked bar plots representing
the proportion of tumor cellular states per tumor for pan-glioma classification (top row) and previously published classifications (lower left row;
Venteicher et al. and lower right Neftel et al.) e, Sankey plot representing the proportion of IDHmut tumor cells with pan-glioma classification and
associated classification described in Venteicher et al. (left). Sankey plot representing the proportion of IDHwt tumor cells with pan-glioma classification
and associated classification described in Neftel et al.(right). f, sScRNAseq area under the curve estimates for selected gene sets (that is, proportion of
expressed genes in signature per cell). The AUC estimates are presented for response to stress, hypoxia, and random gene set signatures summarized
by pan-glioma cell state and separated by IDH mutation subtype. All cells from a single patient are normalized to its median AUC value for a given
signature. Higher relative values indicate greater enrichment score for each signature. P-values represent two-sided Wilcoxon rank sum tests comparing
differentiated-like tumor cells with stem-like and proliferating stem-like. g, Density plots representing TFBS motif DNAme disorder (scRRBS data) in
IDHmut (left) and IDHwt (right) single-cell DNAme data for TFs whose activity (scRNAseq based SCENIC analysis in Fig. 6¢,d) characterizes a specific
cell state (n =15 TFs per cell state). Kolmogorov-Smirnov p-value tests for differences in TFBS DNAme disorder across the cellular states. Dotted lines
represent the median TFBS motif DNAme disorder value for cell state defining TFs.
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Extended Data Fig. 7 | LIGER integrated tumor-specific clustering of single-cell RNA and single-cell DNAme data. a, Schematic diagram representing
LIGER workflow to jointly cluster single-cell RNAseq and DNAme data generated from the same tumor dissociation. b, Joint single-cell RNAseq (scRNA)
and single-cell DNAme (scDNAm) clustering and UMAP projections highlighting similar cellular state distributions across platforms. Sample annotation
is presented on the left of each paired UMAP plot, each dot is an individual single cell, and cell number for each technology is presented in the lower-left
hand corner. UMAP coordinate space remains the same for both scRNA and scDNAm visualizations with cellular states for that platform represented

by a colored dot and data for the other platform represented by a gray dot. Stacked bar plots enumerating the proportion of cellular states detected by
each platform are presented to the right of each paired UMAP plot. "' indicate specimens in which the cellular proportions across the two platforms are
significantly different (two-sided Fisher's Exact test, p < 0.05). ¢, Promoter DNAme for samples with sufficient number of cells in each state. Each box
spans the 25" and 75" percentile, center lines indicate the median, and the whiskers represent the absolute range (minima/maxima), excluding outliers.
Surrounding violins represent the distribution for each condition. Two-sided Wilcoxon rank sum test p-values are presented for each tumor.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Stress-associated changes in DNAme disorder are associated with altered population-level transcriptional dynamics and

not related with genetic changes. a, Relative gene expression levels for two patient-derived glioma sphere-forming cells for candidate gene cell state
(SOX2, POU5FT) and cell stress (JUN, EPAST (HIF2A), VEGFA) via RT-PCR. Normoxia and varying levels of hypoxia (2% and 1% oxygen, n = 4 per group)
were assessed. Statistical significance (p < 0.05, Tukey HSD) is indicated by an asterisk. b, Relative DNAme disorder in hypoxia conditions (2% and

1%) compared with normoxia. P-values for Kruskal-Wallis tests are presented across specific genomic contexts (n = 4 per group). ¢, Upset plot of

shared mutations for a randomly selected replicate from cell line HF3016 cultured under normoxia and irradiation (10 Gy). Mutations were determined

in reference to patient normal blood. The mutational overlap is presented by the black bar with the mutations called private to irradiation and control
also presented. d, Heatmap representing transcription factors that were determined to have consistently different TFBS motif DNAme disorder levels in
stress conditions (hypoxia and irradiation) compared with controls across both cell lines (p < 0.1 two-sided Wilcoxon rank sum test across all cell lines
and two stressors) are presented with their change in inferred TF activity (SCENIC, methods). e-f, ELK4 and TFDP1 are presented for TFBS motif DNAme
disorder (RRBS) and TF activity (scRNAseq), which demonstrated consistent changes in TFBS motif DNAme disorder and stress altered TF activity. Two-
sided Wilcoxon rank sum test p-values are presented. g-h, scRNAseq scaled gene expression heatmaps for the top 5 differentially expressed genes per
stress exposure and time point. i-j, Stacked bar plots comparing the cell state proportions for the Neftel et al. proliferation-independent IDHwt classifier
across different stress conditions, time points, and cell lines. Statistical differences are presented for Chi-Square test (*** = p < 0.001). Oligodendrocyte
progenitor cell-like (OPC-like), Neural progenitor cell-like (NPC-like), Mesenchymal-like (MES-like), and Astrocyte-like (AC-like) cell states are presented.
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Extended Data Fig. 9 | Whole genome sequencing phylogenetic inference of tumor samples. a, Stacked bar plots representing the proportion of
whole-genome sequencing (WGS) derived somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. b-i, Phylogenetic
trees constructed from whole genome sequencing data (mutations and somatic copy number alterations) using phyloWGS and further annotated
using single-cell inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations specific to the given clone, with node size
corresponding to the fraction of cells with the associated alterations. Branch length scales with the number of mutations attributed to that clone. Clonal
alterations are colored in blue, with subclonal alterations colored in gold. Genes considered significantly mutated in TCGA analyses? and chromosomal
arm-level events are presented. Arm-level events are defined as spanning at least 80 percent of the chromosome arm, while partial events span at least
40 percent.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Genetic influences on epigenetic and transcriptional diversity in glioma cells. a-c, SCNA phylogenetic trees annotated with
scRRBS-derived cell state. Adjacent boxplots are presented for DNAme and DNAme disorder across cuts in the dendrograms. d-e, Extrachromosomal
DNA circular amplicon reconstruction displaying genomic rearrangements predicted from whole genome sequencing. Coverage depth is represented as a
histogram across a genomic interval with segment copy number (CN) estimation provided on the right y-axis. Discordant read pair clusters are indicated
by arcs and colors highlight read pair orientation (for example, brown = everted read pairs®). Amplicon intervals are provided at the bottom of the plot
with annotation for known oncogenes (for example, EGFR). f, EGFR copy number estimation from single-cell RRBS data in ecDNA+ tumors. Cells with EGFR
copy number greater than 6 were classified as EGFR ecDNA+ (blue). g, Single-cell 10-kb tiled DNAme separated by EGFR ecDNA status. Single cells with
inferred copy number status greater than 6 were classified as ecDNA+ (blue). Two-sided Wilcoxon rank sum test p-values comparing DNAme across
ecDNA status are reported for each patient tumor. h, Boxplots depicting transcriptional diversity using gene count signatures calculated in scRNAseq data
for each tumor, with cells separated based on inferred EGFR copy number status (gray = EGFR ecDNA-, blue = EGFR ecDNA+). Transcriptional diversity
was compared based on predicted ecDNA status within each tumor subclone. Stars (*) indicate statistically significant differences based on two-sided
Wilcoxon rank sum test (p < 0.05). Each box plot in this figure spans the 25" and 75'" percentile, center lines indicate the median, and the whiskers
represent the absolute range (minima/maxima), excluding outliers. Surrounding violins represent the distribution for each condition.
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stress experiments were performed across the same number of biological replicates in two separate cell lines.

Blinding All patient samples were deidentified and were assigned a study-specific barcode. Blinding was not relevant to our study since there was no
randomization of groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
™ Antibodies |Z |:| ChlP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Dual use research of concern

Antibodies

Antibodies used Antibodies were used to select for non-immune and non-endothelial cells during the FACS sort for scRRBS experiments. Alexa Fluor
488 conjugated anti-CD45 antibody (Cat. no. 304017, BioLegend) and PECy7-conjugated anti-CD31 antibody (Cat. no. 303117,
BiolLegend).

Validation Antibodies for their use in FACS with human tissue samples was confirmed according to the manufacturer's website.

Alexa Fluor 488 conjugated anti-CD45 antibody (Cat. no. 304017, BioLegend) - https://www.biolegend.com/en-us/products/alexa-
fluor-488-anti-human-cd45-antibody-27387?GrouplD=BLG5926

PECy7-conjugated anti-CD31 antibody (Cat. no. 303117, BioLegend) - https://www.biolegend.com/en-us/products/pe-cyanine7-anti-
human-cd31-antibody-6124?GrouplD=BLG5721
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Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

The dataset includes 11 patients with data presented regarding sex, tumor grade, and treatment. This information is
presented in Supplementary Table 1.

Adult patients diagnosed with an initial or recurrent diffuse glioma were eligible for recruitment. The material was donated
for general research purposes. Informed consent was obtained from all study subjects as part of the Institutional Review
Board (IRB) protocol.

The study was approved by the local ethics committee and by the IRB (The Jackson Laboratory, The University of Connecticut
Health Center, and St. Michael's Hospital) and conducted in accordance to the Declaration of Helsinki protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

g The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

Single cell suspensions were blocked with human BD Fc Block (BioLegend) for 5 min on ice, prior to antibody staining, and
labelled via incubation with 1:100 dilution of Alexa Fluor 488 conjugated anti-CD45 antibody (Cat. no. 304017, BioLegend)
and 1:100 dilution of PECy7-conjugated anti-CD31 antibody (Cat. no. 303117, BioLegend) for 30 minutes at 4C. Cells were
washed with Hank’s buffered saline solution and resuspended in 2mM EDTA/ 2% BSA/ PBS buffer containing [2ug/mL]
propidium iodide (PI) (BD Biosciences, Cat. No. 556364) and [1uM] Calcein violet (Invitrogen) for 20 minutes at 4 degrees C.

Fluorescence activated cell sorting (FACS) was performed using a BD FACSAria Fusion instrument with an 130um nozzle and
using the lowest event rate.

FlowJo (10.3).

FACS was used to sort viable cells for 10X single-cell RNA sequencing and to sort non-immune and non-endothelial cells in the
scRRBS experiments.

Single cell mode was selected to further ensure stringency of sorting.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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