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SUMMARY
Sporadic gliomas in companion dogs provide a window on the interaction between tumorigenic mechanisms
and host environment. We compared the molecular profiles of canine gliomas with those of human pediatric
and adult gliomas to characterize evolutionarily conserved mammalian mutational processes in gliomagen-
esis. Employing whole-genome, exome, transcriptome, and methylation sequencing of 83 canine gliomas,
we found alterations shared between canine and human gliomas such as the receptor tyrosine kinases,
TP53 and cell-cycle pathways, and IDH1 R132. Canine gliomas showed high similarity with human pediatric
gliomas per robust aneuploidy, mutational rates, relative timing of mutations, and DNA-methylation patterns.
Our cross-species comparative genomic analysis provides unique insights into glioma etiology and the
chronology of glioma-causing somatic alterations.
INTRODUCTION

The natural history of cancer is marked by temporal acquisi-

tion of diverse genetic and epigenetic aberrations. The inevi-
Significance

Diffuse gliomas are the most common malignant brain tum
Preclinical models have proven themselves as poor predictor
an attractive alternative model because of their comparable tum
the similarities and differences between human and canine glio
to identify conserved somatic drivers, mutational processes
species. Canine gliomas resemble human gliomas at (epi-)gen
disease, thus rationalizing sporadic canine glioma as a prec
patients with canine or human glioma.

Ca
table intratumoral and interpatient heterogeneity among

evolving cancer cells poses a major obstacle in our under-

standing of cancer evolution and designing effective treatment

strategies (Alizadeh et al., 2015). Recent developments in
ors, with high-grade tumors carrying a dismal prognosis.
s of clinical efficacy. Spontaneous glioma in dogs provides
or microenvironment and tumor life history. We determined
mas through genomic profiling, and leveraged our datasets
, and temporal ordering of somatic glioma events across
etic levels and are more reminiscent of pediatric than adult
linical model tailored to measuring treatment efficacies in
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high-throughput lineage tracing, organoid cultures, and pa-

tient-derived xenografts have provided better resolution of

heterogeneity and driver events. Nonetheless, in the absence

of natural host response, preclinical in vitro and rodent models

are unable to fully recapitulate a spontaneously evolving tu-

mor’s life history. This limitation challenges the accuracy of

predicting therapeutic responses in these preclinical models,

especially response to immunotherapies (Buque and Galluzzi,

2018).

Somatic evolution of cancers may follow convergent pat-

terns across mammalian species by selecting cells that carry

beneficial mutations in highly conserved regions, i.e., genes

and their regulatory non-coding regions enabling one or

more cancer hallmarks (Hanahan and Weinberg, 2011). Unlike

induced cancer models, comparative genomics of sponta-

neous tumors across species provides a unique advantage

to identify defects in such shared, evolutionarily constrained

regions (Lindblad-Toh et al., 2011) and to evaluate the impor-

tance of host context in the tumor’s evolution. In addition to

their natural tumorigenesis, spontaneous cancers in dogs

are marked by the presence of a fully functional tumor micro-

environment (Khanna et al., 2006; LeBlanc et al., 2016).

Cancer cells are subject to clonal selection and drift, and

the resulting tumor is molded by selection pressure from the

tissue context (DeGregori, 2017; Fortunato et al., 2017). This

Darwinian adaptation may select for somatic alterations in

evolutionarily conserved regions in both dogs and humans

that are relevant to tumorigenesis.

Sporadic gliomas occur in companion dogs at frequencies

similar to those in humans (Snyder et al., 2006; Song et al.,

2013). Genomic characterization of canine glioma has a

distinct merit, in that dogs are diagnosed in the adult stage

of life but with an age distribution that is comparable with

human pediatric disease. This seeming conundrum in fact

creates an opportunity to compare somatic drivers and

their relative timing in canine glioma with those in human gli-

oma. Studies involving comparative genomics of spontaneous

canine cancers have already enabled identification of breed-

specific, disease-risk loci under strong evolutionary con-

straints and with known roles in human cancer, e.g., germline
244 Cancer Cell 37, 243–257, February 10, 2020
FGF4 retrogene expression in chondrodysplasia (Parker et al.,

2009), somatic BRAF V600E mutation in canine invasive

transitional cell carcinoma of the bladder (Decker et al.,

2015b), recurrent somatic SETD2 mutations in canine osteo-

sarcoma (Sakthikumar et al., 2018), and TP53 pathway alter-

ations in canine melanoma (Hendricks et al., 2018; Wong

et al., 2019). Earlier studies in canine gliomas have character-

ized somatic copy-number alterations syntenic with those

in human adult gliomas (Dickinson et al., 2016) and have

identified genetic susceptibility factors near genes such as

CAMKK2, P2RX7, and DVL2 (Mansour et al., 2018; Truve

et al., 2016).

Here, we have performed comparative genomic, transcrip-

tomic, and epigenetic profiling across three population struc-

tures, canine glioma, human adult glioma (Ceccarelli et al.,

2016), and human pediatric glioma (Gröbner et al., 2018; Ma et

al., 2018), to study somatic evolutionary traits of glioma across

two species and in different age groups. We leveraged genomic

profiles to infer molecular life history in order to understand

cross-species convergent evolution of glioma (Aktipis et al.,

2013; Stearns, 1992).

RESULTS

Human Glioma Driver Events Are Frequently Found in
Canine Disease
We performed whole-genome, exome, transcriptome, and

methylation sequencing (373 libraries) on canine gliomas (n =

83) and germline (n = 67) samples from 83 dogs (NCBI SRA

accession: PRJNA579792), with all samples obtained via nec-

ropsy. Using the recently updated criteria for diagnostic histo-

pathological classification (Koehler et al., 2018), 46 cases were

classified as oligodendroglioma, 31 cases as astrocytoma, and

6 cases as undefined glioma (Table S1). We defined a common

set of 81 cases for which whole-genome and exome data were

available with minimum of 303 coverage in exome regions

(Table S1 and Figure S1A; STAR Methods). From mutation calls

derived from all 81 cases, we detected somatic mutational driver

events using dNdS (Martincorena et al., 2017), MuSiC2 (Dees

et al., 2012), and a semi-supervised comparison with known
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Figure 1. Comparative Somatic Landscape of Canine and Human Gliomas

(A) Somatic variants in canine gliomas. Top bar plot shows patient-wise frequency of somatic variants (n = 46 of 81 canine patients) and right-side bar plot shows

gene-wise frequency of somatic variant types. Bottom annotations show relevant patient-specific annotations.

(legend continued on next page)
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cancer drivers in human adult and human pediatric cancers

(Bailey et al., 2018; Gröbner et al., 2018; Ma et al., 2018) (Fig-

ure 1A and Table S2; STAR Methods). We detected mutations

in genes associated with human pediatric (Mackay et al., 2017)

and adult glioma (Brennan et al., 2013; Ceccarelli et al., 2016)

such as the TP53, PDGFRA, PIK3CA, and EGFR (Figure S1B),

as well as recurrent hotspot and mutually exclusive mutations

with high oncogenic impact according to the Catalog of Somatic

Mutations in Cancer (COSMIC) database (Tate et al., 2019) in

PIK3CA H1047R/L (n = 8), PDGFRA K385I/M (n = 6), IDH1

R132C (n = 3), and SPOP P94R (n = 1; 1 shared with PIK3CA

H1047R) (Figure 1B and Table S3). These mutations were also

identified as being under positive selection or as significantly

mutated genes using the dNdS (Martincorena et al., 2017)

approach (Table S2) and thus indicating driver mutations of

canine gliomas. Mutations affecting the IDH1 R132 codon are

a defining characteristic of low-grade adult gliomas (Cancer

Genome Atlas Research Network et al., 2015) andwere detected

infrequently in pediatric and canine gliomas (n = 3/81). Overall,

36/81 (44%) of canine gliomas carried at least one significantly

mutated gene. This proportion was comparable with published

findings in human pediatric gliomas (114/217, 52%, chi-square

p value 0.54) (Gröbner et al., 2018) but contrasted with the fre-

quency at which adult gliomas contain at least one significantly

mutated gene alteration (753/812, 93%, chi-square p value

0.0004). To demonstrate similarity between canine gliomas and

human gliomas, we summarized levels of somatic coding muta-

tions, high-level copy amplifications and deep deletions in gene

sets reflecting previously reported cancer hallmarks (Table S4).

We tallied weighted pathway contributions per cohort (canine,

adult, pediatric) by the number of coding mutations within each

cohort and genes per pathway. Adult glioma is commonly sepa-

rated into subtypes on the basis of IDHmutation as well as chro-

mosome arm 1p and 19q deletion, resulting in three subtypes: (1)

IDH wild type; (2) IDH mutant with codeletion (IDHmut-codel);

and (3) IDH mutant without codeletion (IDHmut-noncodel) (Louis

et al., 2016). Pediatric high-grade gliomas are separated based

on histone H3 mutation status into two subtypes: histone H3

gene mutant (H3 mutant) versus wild type (H3 wild type) (Louis

et al., 2016). We did not include low-grade pediatric gliomas in

our comparison due to the paucity of somatic alterations in these

glioma types (Jones et al., 2013; Pollack et al., 2019; Zhang et al.,

2013). We found that canine gliomas were most similar to pedi-

atric H3 wild-type gliomas at the pathway alteration level, i.e.,

comparable hallmark enrichment with no significant difference

between groups. Pediatric H3 mutant, adult IDH wild type, and
(B) Gene lollipop plots showing recurrent hotspot mutations for three genes: PIK3

mutations in human cancers.

(C) Hallmark enrichment of somatic cancer drivers (mutations and copy-number a

adult (IDH wild-type, IDHmut-codel, IDHmut-noncodel) and pediatric (H3-mutant

the respective cohort harboring mutations in selected five hallmarks. Two-sided

p values less than the threshold (p < 0.05) are shown (*p < 0.05, **p < 0.01, ***p

(D) Somatic mutation rate across canine and human brain tumors: Box plot sho

log(x+1) scale. x axis shows 11 types of pediatric brain tumors (Gröbner et al., 201

mutant and H3 wild type, and adult gliomas separated by IDH mutation and 1p/19

the median in the center. The lower and upper whiskers extend up to 1.5 time

astrocytoma; ATRT, atypical teratoid rhabdoid tumor; EPD_ST, ependymoma

medulloblastoma. Tumors are sorted in ascending order by increasing mutation

See also Figure S1 and Tables S1, S2, S3, and S4.
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IDHmut-noncodel gliomas showed increased frequency of

genemutations in cancer hallmarks such as deregulating cellular

energetics, genomic instability, and resisting cell death (Figures

1C and S1C). Among all 11 cancer hallmarks tested, ‘‘avoiding

immune destruction’’ scored low across both canine and human

gliomas (Table S4), potentially owing to the immune-cold nature

of gliomas (Boussiotis and Charest, 2018; Brown et al., 2018).

We compared mutation burden between canine and a variety

of human pediatric and adult cohorts using coding mutation

rates from 4,761 human patients (Bailey et al., 2018; Ceccarelli

et al., 2016; Gröbner et al., 2018; Ma et al., 2018) (STAR

Methods). The somatic mutation rate of canine glioma (0.34 cod-

ingmutations permegabase; 95%confidence interval [CI]: 0.15–

0.6) was similar to that of human pediatric gliomas (Figures 1D

and S1D). High-grade canine gliomas (n = 63/81) had mutation

rates comparable with those of pediatric H3-mutant and H3

wild-type subtypes (0.34, 0.27, 0.25 coding mutations per meg-

abase, respectively; Wilcoxon p value 0.18 and 0.1; Figure S1E),

but significantly lower than in human adult IDH-mutant and IDH

wild-type gliomas (0.77 and 1.67 coding mutations per mega-

base, respectively; Wilcoxon p values of 8 3 10�9 or less). Low

mutation burden has been linked to fewer mutations in cancer-

driving genes (Martincorena et al., 2017) and may explain the

relative paucity of significantly mutated genes observed in

canine gliomas, including weaker positive selection (q > 0.1)

for known and mutated cancer genes (n = 50; Figure S1F). These

results demonstrate that the landscape of somatic single-nucle-

otide variants is similar to that of human glioma, and suggests

that canine glioma aligns more closely with human pediatric gli-

oma than with adult disease.

Aneuploidy Is a Major Driver of Canine and Pediatric
High-Grade Glioma
We compared the DNA copy-number landscape of glioma

across species with a focus on the >50% of canine gliomas

(45/81) without evidence of significantly mutated genes. No focal

copy-number amplifications were detected among canine gli-

omas. Human glioma tumor-suppressor gene CDKN2A/B was

homozygously deleted in 8/67 (12%, all astrocytomas), and

PTEN in 2/67 (3%) of canine glioma genomes (Figures 2A and

S2A). Together, 67/81 (83%) patients with canine glioma con-

tained somatic mutations and/or focal copy alterations in known

human glioma drivers (Figure S1E). Contrasting with the limited

presence of focal DNA copy-number alterationswas the high fre-

quency of arm-level copy gains (canine chromosomes 7q, 13q,

16q, 20q, 34q, 35q, and 38q) and arm-level losses (canine
CA, IDH1, and SPOP. All hotspot mutations are ortholog to validated COSMIC

lterations) across canine glioma (CG) and WHO molecular subtypes of human

and H3wild-type) high-grade glioma. y axis represents proportion of patients in

Fisher’s exact test was used for comparison of proportions between cohorts.

< 0.001, ****p < 0.0001).

wing somatic mutation rates as coding mutations per megabase in log1p or

8), canine glioma (n = 81), adult pediatric high-grade gliomas separated by H3

q codeletion status (far right). Each box spans the first and third quartiles with

s interquartile range, and values outside whiskers are outliers. PA, pilocytic

supratentorial; ETMR, embryonal tumors with multilayered rosettes; MB,

rate.
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chromosomes 1q, 5q, 12q, 22q, and 26q) (Figure S2B). Themost

frequent arm-level alteration comprised the shared syntenic re-

gions of glioma drivers PDGFRA, KIT, and MYC (Figure S2C)

and typically resulted in more than four copies of these genes

(canine 13q+; 11/67 cases, 16%). Other common arm-level

alterations included PIK3CA (canine 34q+) and theHIST1 cluster

(canine 35q+) as well as hemizygous loss of heterozygosity of

tumor-suppressor genes TP53, RB1, and PTEN (Figure 2A).

We quantified the prevalence of aneuploidy across the canine,

human pediatric, and adult glioma populations (Taylor et al.,

2018). For copy-number estimation, matched tumor-normal

whole-genome sequencing profiles from canine (n = 67) and

pediatric gliomas (n = 50) (Ma et al., 2018), and Affymetrix

SNP6 profiles for adult gliomas (n = 969) (Ceccarelli et al.,

2016) were analyzed (STARMethods). We calculated aneuploidy

as the proportion of the copy-number segmented genome that

was non-diploid (STAR Methods). Canine glioma independent

of tumor grade had a median of 25% genome aneuploidy, which

was significantly higher than that in adult IDH-mutant tumors

(8%–9% of genome) and marginally higher than in adult IDH

wild-type glioma (18% of genome) (Figure 2B). In contrast, pedi-

atric H3 wild type (19% of genome) and H3 mutant (26% of

genome) showed rates of aneuploidy comparable with that of

canine glioma. We then searched for aneuploidy within syntenic

regions, which may be subject to selection pressure during

gliomagenesis. We mapped canine chromosome arms to their

human counterparts and used unsupervised hierarchical clus-

tering of the most variable syntenic aneuploid regions to identify

regions of shared aneuploidy (Figure 2C). The analysis revealed

three aneuploidy clusters. The first cluster (blue dendrogram)

consisted of human 1p/19q codeletions seen commonly in adult

IDH-mutant gliomas but observed in 20%–36% of canine

(across four canine chromosomes of cases) and 25% of H3

wild-type and H3-mutant human pediatric gliomas. The second

cluster (red dendrogram) consisted of arm-level aneuploidy of

human 7p (EGFR) and 10q (PTEN) arms characteristic of human

adult IDH wild-type (86% and 92% of patients, respectively) and

pediatric H3-mutant and H3 wild-type gliomas (33% and 75% of

patients) for which 5% and 14% of canine gliomas showed
Figure 2. Aneuploidy Is a Major Driver of High-Grade Gliomas

(A) Focal somatic copy alterations in canine gliomas (n = 43 of 67 canine patien

deletion (2 copy loss) based on GISTIC2 gene-level calls (STAR Methods). Top

alterations, and right-side bar plot shows driver-wise frequency of somatic varian

patient-specific annotations.

(B) Comparative aneuploidy score: box plots showing fraction of genomewith ane

(n = 13) pediatric high-grade gliomas, and human adult glioma (n = 969), separate

third quartiles with the median in the center. The lower and upper whiskers exten

plot (displayed as dots; STAR Methods), and values outside whiskers are outliers.

test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

(C) Aneuploidy metrics across shared syntenic regions of canine and human gen

column shows the proportion of patients with the most variable arm-level aneupl

syntenic chromosome arms for human (H) and canine (C) genome. Each row repr

and adult glioma as detailed in (B), plus pediatric low-grade gliomas (PG_LGG). C

clusters described in the main text. Corresponding glioma driver alterations are

(D) Scatterplot showing distribution of somatic glioma driver genes with respect t

(Shannon entropy) across canine and molecular subtypes of human pediatric an

sample. Size of the circle represents a major (1 clone) versus minor subclones (ra

Darker to lighter blue scale for circle and driver genes it may contain (arrows) re

entropy.

See also Figure S2 and Table S3.
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arm-level aneuploidy in the EGFR and PTEN regions, respec-

tively. None of three IDH1 mutant canine gliomas shared these

syntenic aberrations, suggesting a mutually exclusive pattern

as observed in human gliomas. The third cluster (black dendro-

gram) consisted of human 4p/8q and syntenic canine 13q arm,

which contains the genes PDGFRA and MYC, amplified in

78% of canine gliomas. The ACVR1 and the HIST1 genes

are frequently mutated in pediatric high-grade gliomas and in

particular H3.1K27M diffuse intrinsic pontine glioma (Mackay

et al., 2017). We observed loss of the syntenic human 2q/canine

36q region (containing ACVR1) within 37%, 28%, and 17% of

canine, pediatric H3 wild-type, and H3-mutant gliomas, respec-

tively. In contrast, this alteration was not observed in human

pediatric or adult IDH-mutant glioma and was present in 6% of

IDH wild-type adult gliomas. Similarly, human chromosome

arm 6p/canine chromosome arm 35q, containing the HIST1

gene cluster, was frequently amplified in canine gliomas (70%)

and pediatric H3 wild-type (50%) and H3-mutant gliomas

(13%) but not in pediatric low-grade or adult gliomas (<5%).

We measured intratumoral heterogeneity using the Shannon

Diversity Index per each patient tumor sample across canine

gliomas and different molecular subtypes of human gliomas.

Shannon entropy value correlated with the proportion of

variants per subclone and the total number of subclones in

a tumor sample, i.e., values near zero indicated lower intratu-

moral diversity (homogeneity or a dominant clone), while

values closer to 1 or higher were associated with increased di-

versity and tumors consisting of more than one subclone (Wolf

et al., 2019). We found that the canine gliomas showed a rela-

tively bimodal distribution, with 25% of canine gliomas (15/60;

7 cases had no resolved clonal structure for intratumoral

heterogeneity analysis) being very heterogeneous (Shannon

Diversity Index R 0.45—third quartile) while remaining cases

showed patterns suggesting clonal dominance (median Shan-

non Diversity Index 0.03, 95% CI: 0.02–0.07). Intratumoral

heterogeneity of canine gliomas was comparable with adult

IDH wild type or IDHmut-noncodels (unpaired two-tailed

Wilcoxon test p value >0.18). In contrast, canine gliomas

had significantly higher heterogeneity over H3 wild-type
ts). Squared symbol in cell suggests either amplification (>4 copies) or deep

bar plot shows patient-wise frequency of somatic variants and copy-number

t types, including copy-number alterations. Bottom annotations show relevant

uploidy (y axis) for canine gliomas (n = 67), H3-mutant (n = 10), and H3wild-type

d by IDH mutation and 1p/19q codeletion status. Each box spans the first and

d up to 1.58 times interquartile rage divided by square root of samples per box

p values were calculated using two-sided Wilcoxon rank-sum non-parametric

ome: Heatmap showing comparative aneuploidy across three cohorts. Each

oidy (present or absent) for a given shared syntenic region. x-axis label shows

esents canine glioma and molecular subgroups of human high-grade pediatric

olored dendrogram branches (blue, red, and black) represent three aneuploidy

highlighted below syntenic chromosome arms.

o their cellular prevalence (cancer cell fraction) and intratumoral heterogeneity

d adult gliomas. Each circle represents a clonal cluster assignment per tumor

nging from 2 to 4). Labeled genes represent glioma drivers shown in Figure 1A.

presents the increase in intratumoral heterogeneity as measured by Shannon
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Figure 3. Molecular Life History Analysis Using Mutational Signatures and Timing Analysis

(A) Deconvolution of known human mutational signatures on canine glioma somatic variant data. Stacked bar plots show relative contribution of known human

mutational signatures in individual canine patients. Signature contributions were aggregated based on their grouping into proposed mechanism. Only signatures

with a relative contribution of more than a third quartile per sample are shown in the plot. Plot on the left side shows eight cases with highest mutational frequency

(based on outlier mutational profile, STAR Methods) and plot on the right side shows nine representative cases with median signature contribution within in-

terquartile range. Signatures with no proposed mechanism are grouped into the unknown category. APOBEC AID, activation-induced cytidine deaminases; HR

defect, homologous repair defect; MMR, mismatch repair; TMZ-induced, alkylating agent temozolomide-associated signature.

(B) Hierarchical clustering of cosine similarities between known human mutational signatures and de novo signatures constructed using available whole-genome

data from canine (CG), pediatric (PG), and adult (AG) data. Higher cosine similarity (red color) indicates higher resemblance of de novo signature to known

mutational signature. Only one of three cluster groups are shown here; the complete clustering is shown in Figure S3D.

(C) Horizontal stacked bar plots represent percentage contribution of signature groups (x axis) for somatic driver mutations (y axis) found in canine and human

gliomas. Each of seven signature groups represents a combination of one of more known human signatures. S16_S25 and S18_Neuroblastoma: signatures were

previously described by Gröbner et al. (2018).

(legend continued on next page)
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(p value 0.002) and H3-mutant (p value 0.007) pediatric gli-

omas (Figure S2D).

To better understand the potential functional versus non-func-

tional nature of intratumor heterogeneity (Jamal-Hanjani et al.,

2017), we asked whether frequent driver mutations found in

canine gliomas (Figure 1A) are part of major (dominant) versus mi-

nor clone, and how these driver events compare with measured

heterogeneity across molecular subtypes in human pediatric

and adult gliomas (Williams et al., 2016).We observed that among

less heterogeneous tumor samples (Shannon entropy near 0),

shared driver events across canine and adult gliomas are part of

major clones, including PIK3CA mutations in canine gliomas,

IDH1/2mutations in IDH-mutant adult gliomas, andEGFR somatic

mutations in adult IDH wild-type GBM (Figure 2D). Among tumor

samples with increased heterogeneity, we found mutations in

PDGFRA in canine gliomas (n = 7/60) and H3 wild-type pediatric

gliomas (n = 2/14), whereas mutations in TP53 (n = 9/20) and

PTEN (3/20) were seen among IDH wild-type and IDHmut-nonco-

del patients. We did not observe significant enrichment of driver

events within minor clone(s).

Collectively, the observed high degree of aneuploidy and

clonal nature of somatic drivers in canine glioma may suggest

progressive genomic instability. Comparing the aneuploidy

score among canine gliomas with high versus low coding

mutational rate showed significant increases (Figure S2E;

Wilcoxon p value 0.006) in aneuploidy among patients with a

high mutational rate, suggesting that an underlying mutational

process promotes genomic instability during gliomagenesis.

DNA Damage-Related Mutational Processes Shape
Somatic Driver Landscape and Maintain Genomic
Instability
We leveraged known mutational signatures from adult (COSMIC

v2, 1 to 30) and pediatric cancers (T1 to T12) to estimate and

compare underlying mutational processes across canine and

human gliomas (Alexandrov et al., 2013; Gröbner et al., 2018;

Ma et al., 2018) (Table S5). The most enriched signatures across

all canine gliomas (Figure S3A) were associated with aging

(COSMIC signature 1, pediatric signature T1), mismatch repair

deficiency (COSMIC signature 15), APOBEC-AID (COSMIC

signature 2, 9), homologous repair defect signatures (COSMIC

signature 8, pediatric signature T3), and signatures with un-

known relevance (COSMIC signature 12, pediatric signature

T10 and T11). Among the nine canine gliomas with the highest

mutation rates (median coding mutation rate of 0.55 per mega-

base) (Figure 3A), there was significant (Wilcoxon p value

0.025) enrichment of two additional mismatch repair signatures

(pediatric signature T9 or COSMIC signature 6, 15) (Figure S3B).

A frameshift indel in mismatch repair gene MSH6 was detected

in one case with an outlier mutation frequency (coding mutation

rate of 5.04 per MB) (Figure S3C). Among the remaining cases

(median coding mutation rate of 0.25 per MB), homologous

repair defect or ‘‘BRCAness’’ signatures (COSMIC signature 3
(D) Molecular timing of somatic drivers across canine and human gliomas: Stack

driver event (y axis) being a late event in tumor evolution and value of <0.5 being

pairwise winning probability (where win is defined as an early event) as used in spo

1 to display early events on the left side of the plot.

See also Figure S3 and Table S5.
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or pediatric signature T3, COSMIC signature 8 or pediatric signa-

ture T6) were the second most prominent signatures after clock-

like signatures (COSMIC signature 1, 5). Homologous repair

defect signatures have been reported to be enriched in pediatric

high-grade gliomas with higher genomic instability (Gröbner

et al., 2018). The known human signatures were validated by

clustering de novo constructed signatures for all three cohorts

(canine, human adult, and pediatric gliomas). Independent of

cohort type, we observed significant cosine similarity (>0.8; Fig-

ures 3B and S3D) of de novo signatures with known homologous

repair defect mutational processes (including COSMIC signature

3/pediatric signature T3, COSMIC signature 8/pediatric signa-

ture T6), further implying a role for these mutational processes

in cross-species gliomagenesis.

Next, we determined the relative contribution of mutational

processes (with deconvoluted human signatures as a proxy) in

generating mutations within significantly mutated genes, thus

to identify the dominant mutational process(es) active during

tumor evolution (Figure 3C). Although clock-like processes

(COSMIC signature 1, 5) largely contributed to an age-related in-

crease in mutations, including in driver genes, we found that

homologous repair defect signatures (COSMIC signature 3, 8)

contributed (26%, 21/81 cases) to driver mutations across all

three cohorts, emphasizing that homologous repair defect can

not only serve as a potential source for driver mutations but

also fuel progressive genomic instability along with observed

high aneuploidy (Blank et al., 2015; Targa and Rancati, 2018) in

high-grade gliomas across all three cohorts.

Comparative Molecular Timing Analysis Highlights
Context-Specific Early and Late Drivers of
Gliomagenesis
We inferred the sequential order of somatic alterations during

gliomagenesis by estimating clonality of glioma driver events

(Figure 3D) (Jolly and Van Loo, 2018; Shinde et al., 2018). In

brief, significantly mutated genes were timed as occurring

early (clonal) to late (subclonal) during tumor evolution based

on their cancer cell fraction after accounting for tumor purity,

ploidy, and copy-number status (STAR Methods). We

observed clonal PDGFRA and EGFR mutations as the only

shared and early event across all three cohorts. Subsequent

whole chromosome 13 amplification bearing the PDGFRA

mutant allele marked the emergence of the most recent com-

mon ancestor in six canine gliomas (Figure S3E), which grew

to be a dominant clone at the time of diagnosis. IDH1 mutation

marks an initiating event in IDH-mutant human gliomas

(Barthel et al., 2018). Correspondingly, IDH1 mutations were

ubiquitously timed as an initiating event (cancer cell fraction

[CCF] > 0.9) in three canine and three human adult IDH1

mutant cases, and as an early event in one case of pediatric

glioma (CCF = 0.83). We observed NF1 frameshift mutations

mostly as a late event across all cohorts, whereas PIK3CA

mutations appeared as an early event for canine and human
ed density plots, one per each of three cohorts, shows probability (x axis) of a

an earlier event. Density plots for each driver event were calculated based on

rts statistics (Bradley-Terry model). Winning probabilities were subtracted from



Figure 4. Classification of Canine Gliomas Using Human Brain Tumor Methylation Classifier

Heatmap displaying results of L2-regularized, logistic regression classification of canine methylation profiles (n = 45). Each column of the heatmap represents a

sample, and each row in the top panel is the probability that that sample falls under a given subtype classification. The classification with the highest probability in

a given sample has a symbol with symbol color, size, and shape denoting sample histology, tumor grade, and anatomical location, respectively. Panels below the

probability heatmap show the tumor purity, somaticmutation rate, and age for the samples. The horizontal line on the age subpanel denotes the age ofmaturity for

canines (2 years). *Canine glioma patients with IDH1 R132H somatic mutation. See also Figure S4.
pediatric gliomas. Although the relatively uniform timing pat-

terns of these known glioma drivers suggest convergent

evolution in varied contexts, i.e., presence of hotspot muta-

tions in shared drivers (PDGFRA, PIK3CA) during clonal

evolution of glioma across two species and different age

groups, we also observed an oscillating pattern of timing

and consequent underlying natural selection for a set of epige-

netic drivers in the lysine methyltransferase (MLL) family (Rao

and Dou, 2015). MLL3 (KMT2C) gene mutations were clonal

events in canine and pediatric gliomas but subclonal in adult

gliomas, whereas ARID5B mutations showed the inverse

pattern (Figure 3D). MLL family genes include some of the

most commonly mutated genes in pediatric cancers, including

gliomas (Huether et al., 2014; Sturm et al., 2014), but not in

adult gliomas (Bailey et al., 2018).

Canine Gliomas Are Classified as Pediatric Glioma by
DNA Methylation
We hypothesized that epigenetic deregulation in canine gli-

omas may carry a tumor-specific methylation pattern reflecting

underlying tumor pathology, as has been observed across

human brain tumors (Capper et al., 2018). We leveraged

reduced representation bisulfite sequencing of canine gliomas

to generate genome-wide DNA-methylation profiles to classify

canine gliomas according to a classification model widely

used for human brain tumors (Capper et al., 2018). As the

human brain tumor classifier was developed using the Illumina

human 450k array platform, we developed a logistic regression

model to enable classification of the sequencing-based canine

DNA-methylation profiles. We found that the model classified
35/45 (78%) of canine samples as pediatric glioma (Figure 4).

Six of 45 (13%) samples were classified as IDH wild-type adult

glioma, and 4/45 (9%) samples were classified as IDH-mutant

adult glioma. Of the three samples carrying an IDH1 R132 mu-

tation, one was classified as IDH-mutant adult glioma, with a

classification probability of 99%, while a second IDH-mutant

sample had a relatively high classification probability for IDH-

mutant adult glioma (40%), in parallel with a 57% pediatric

glioma classification probability. The third sample had a low

classification probability for IDH-mutant adult glioma (13%)

and was classified as pediatric glioma with an 84% probability.

Although the majority of canine samples were classified as pe-

diatric glioma, the age of diagnosis of the patients in our canine

cohort exceeded the age of sexual maturity in canines, which is

reached between 10 months and 2 years of age (Thompson

et al., 2017). The distribution of age of diagnosis of canine

tumors classified as pediatric suggests that classification was

a function of methylation profile similarity rather than chrono-

logical age. Adult human high-grade glioma tends to be

restricted to the cerebral hemispheres, whereas pediatric

high-grade gliomas occur throughout the central nervous sys-

tem with about half of pediatric high-grade gliomas occurring

in midline locations (Mackay et al., 2017). Of ten midline canine

tumors (six cerebellar, four midline), eight were classified by

DNA methylation as pediatric glioma and two were labeled as

adult IDH mutant (Figure S4A).

DNA-methylation profiles have been used to estimate molec-

ular age (Pai et al., 2011). We used this approach to compare the

level of age acceleration in canine and human glioma. No signif-

icant difference was observed in inferred DNA-methylation age
Cancer Cell 37, 243–257, February 10, 2020 251



H&E CD3 IBA1 CD163 CD14 CD79

Human
Adult
Glioma

Canine
Glioma

Human
Pediatric
Glioma

CD79A IBA1

CD14 CD163 CD3

High Grade Low Grade High Grade Low Grade

High Grade Low Grade
0

25

50

75

100

0

25

50

75

100

Adult
Canine
Pediatric

Pe
rc

en
ta

ge
 P

os
iti

vi
ty

A

B

Figure 5. Immunohistochemistry of Canine and Human Gliomas

(A) Representative hematoxylin & eosin and immunohistochemistry staining of human adult (n = 11), canine (n = 11), and human pediatric gliomas (n = 5) using

antibodies against T cells (CD3), macrophage/microglia (IBA1), M2 polarized innate immune cells (CD163), monocytes (CD14), and B cells (CD79A). Scale

bars, 50 mm.

(B) Violin plots represent the density of percentage positivity by field (y axis) for each of five antibodies described in (A). The points are the mean value of per-

centage positivity per patient within each of three cohorts, i.e., human adult (n = 11), canine (n = 11), and human pediatric gliomas (n = 5). Patients were grouped

into high- versus low-grade gliomas in the absence of available molecular subtype data.

See also Figure S5.
between canine tumors classified as adult glioma versus those

classified as pediatric among tumors with a classification prob-

ability greater than 50% (5.945 versus 5.958, p value 0.9125),

consistent with the lack of correlation observed between canine

methylation classification and chronological age. The normal-

ized mean age acceleration was significantly higher for human

pediatric glioma samples (2.5) than either human adult glioma

(0.8) or canine glioma samples (�0.18) (Figure S4B). Unlike

human samples, the DNA-methylation-inferred age did not

correlate with chronological age for canine samples (Pearson

correlation coefficient 0.21), which may reflect limitations in the

aging clock model derived for canids, rather than biological

differences in canine tumor methylation. The DNA-methylation

profile of canine glioma further corroborates the evidence that

glioma in dogs is generally more similar to human pediatric gli-

oma than human adult glioma.
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Immune Microenvironment
As spontaneous tumors arising in immune-competent hosts,

canine gliomas represent an excellent resource through which

to improve our understanding of how the immune system re-

sponds to and affects brain tumor development. To obtain a

baseline understanding of how the canine glioma (n = 11) im-

mune microenvironment compares with that of adult (n = 11)

and pediatric human gliomas (n = 5), we used immunohisto-

chemistry to profile the frequency of the various immune popula-

tions includingmonocytes (CD14), T cells (CD3), B cells (CD79A),

macrophage/microglia (IBA1), and M2 polarized innate immune

cells (CD163) using antibodies that had been validated for

cross-species staining. Tissue segmentation was performed

so that cell quantification was analyzed in a total of 33,029 fields

within the gliomas. Notably, there are many key shared im-

munological features between the human and canine gliomas



such as the relative scarcity of both CD3+ T cell and CD79A+

B cells and a marked predominance of IBA1+ macrophage/

microglia and CD163+ M2 polarized innate immune cells, espe-

cially in high-grade and pediatric gliomas as previously

described (Wei et al., 2019), indicating that dogs with spontane-

ously arising gliomas may be valid models for the testing of

immune therapeutics (Figures 5A and 5B). Our immunohisto-

chemistry results converged with the relative immune cell frac-

tions derived from RNA-sequencing data by using the leukocyte

gene signature-based CIBERSORT deconvolution method

(Newman et al., 2015), which we applied on gene expression

profiles from human adult (n = 703), pediatric (n = 92), and canine

glioma (n = 40) (Figure S5). The relative immune cell fractions

found in each glioma type were well correlated with one another,

with the low-grade pediatric glioma exhibiting the lowest corre-

lation with high-grade canine glioma (Rho = 0.83).

DISCUSSION

Comparative genomic oncology is a robust approach for identi-

fying evolutionarily conserved drivers and for studying the

natural history of spontaneous tumors in an immune-competent

host, e.g., in domestic dogs (Decker et al., 2015a; Frampton

et al., 2018; Tollis et al., 2017). Our cross-species analysis using

comprehensive molecular profiling of sporadic gliomas high-

lights two key findings. First, convergent evolution of gliomas

is observed across canine, human pediatric, and human adult

gliomas, with shared molecular traits such as shared hotspot

and mutually exclusive mutations in PDGFRA and PIK3CA, and

in genes associated with the p53 and cell-cycle pathways,

among others. This is further supported by aneuploidy being

prevalent among canine and human pediatric high-grade gli-

omas, which are potentially under selection pressure within

shared syntenic regions of the genome. Also, DNA damage-

related mutational processes such as homologous recombina-

tion defects constitute a major source for progressive genomic

instability, and generate somatic variations upon which natural

selection acts to produce shared molecular and histopatholog-

ical features of glioma. Second, the molecular landscape of

canine gliomas resembles that of human pediatric gliomas

based on the observed pattern of somatic alterations among

non-shared drivers and DNA-methylation patterns. We did not

observe canine counterparts of rare human glioma variants

such as pleomorphic xanthoastrocytoma, giant cell glioblas-

toma, or pilocytic astrocytoma, by histopathology or by associ-

ation in somatic drivers. To make a definitive claim that the

canine gliomas are similar to one of the major categories of

either adult or pediatric molecularly defined gliomas, additional

characterization studies are needed that compare canine and

human glioma in terms of cellular states (Neftel et al., 2019) as

defined by single-cell transcriptomics.

Convergent evolution can reflect a footprint of adaptation to

similar selective pressures (Fortunato et al., 2017). While such

convergence is well appreciated in human cancers, and in

particular treatment-resistant cancers (Venkatesan et al.,

2017), our observation of such molecular and phenotypic

convergence across two species provides a strong indicator of

variations under selective pressures exerted by the tissue or

ecological context (DeGregori, 2017; Schneider et al., 2017).
We note that convergent evolution should not discount a possi-

bility of drivers unique to canine gliomas, especially within the

context of germline variants (Truve et al., 2016) and non-coding

regulatory regions (Lindblad-Toh et al., 2011; Villar et al., 2015).

Characterization of such species-specific drivers can be ofmuch

value to identify evolutionary linchpins, which if abrogated can

drive oncogenesis with similar histopathological and clinical

traits. Further studies are needed to help understand how the

time point at which tissue samples used in our comparative anal-

ysis were obtained, necropsy for canine samples, and diagnosis

for human samples affects our results.

The molecular life history of a tumor is marked by multiple,

often successive aberrations in genes (Armitage and Doll,

1954; Nowell, 1976). Accordingly, cancer is largely a disease of

old age except in cases with early exposures to mutagens,

e.g., germline or acquired defects in one or more hallmarks of

cancer (Hanahan and Weinberg, 2011). The median age of

occurrence for canine gliomas in our cohort was 9 years, i.e.,

dogs in their adult stage of life. However, we demonstrate that

canine gliomas have a significantly lower somatic mutation rate

and, consequently, a lower number of significantly mutated

genes than adult human gliomas. The mutation burden of canine

glioma is also less than what has been reported for other canine

cancers, although a direct comparison would require additional

standardization of sequencing and data-preprocessingmethods

(Hendricks et al., 2018; Lorch et al., 2019; Sakthikumar

et al., 2018).

Canine gliomas harbor significantly higher aneuploidy than

adult human high-grade gliomas, and are more similar to human

pediatric gliomas (Gröbner et al., 2018; Mackay et al., 2017). We

find additional support for aneuploidy as a major driver in canine

and pediatric H3-mutant and H3 wild-type high-grade gliomas

with the observation of aneuploidy in regions of shared synteny

containing the HIST1 and PDGFRA genes, known pediatric

glioma drivers (Gröbner et al., 2018; Mackay et al., 2017), and

in noting shared homologous repair defects as a mutational

process that could drive genomic instability (Blank et al., 2015;

Targa and Rancati, 2018). Recent efforts to engineer aneuploidy

have provided better understanding of the functional role of

aneuploidy and how it can be targeted in cancer (Bakhoum

and Cantley, 2018; Taylor et al., 2018). Canine high-grade gli-

omas carrying aneuploidy, especially among syntenic regions

carrying the HIST1 and ACVR1 genes, can be utilized as a pre-

clinical model for such functional screening as well as to validate

recent studies showing its role in immune evasion (Bakhoum

et al., 2018; Davoli et al., 2017).

Tissue context and tumor microenvironment are critical fac-

tors for tumorigenesis (Haigis et al., 2019; Wang et al., 2017),

and current models are unable to accurately represent the devel-

opment of spontaneous tumors (Buque and Galluzzi, 2018). This

renders preclinical evaluation ineffective and increases costs of

clinical trials and results in minimal yields for patients. Preclinical

trials of dog glioma patients enable identification of evolutionarily

constrained and potentially targetable drivers, but simulta-

neously benefit dogs with glioma by offering treatment options

that otherwise are prohibitive due to associated healthcare costs

(LeBlanc et al., 2016). Future efforts leveraging results from the

comparative genomics of glioma to study immune-mediated

host responses can shed light on the complex interplay between
Cancer Cell 37, 243–257, February 10, 2020 253



the tumor and host immune response and also aid in optimizing

ongoing parallel canine clinical trials (Addissie and Klingemann,

2018) in order to improve an otherwise limited response to immu-

notherapies in canine and human gliomas. Our findings of canine

gliomas with low tumor mutational burden but with a clonal na-

ture of somatic drivers would be relevant in development of a

preclinical model to dissect the interplay between mutation

burden and immune escape during tumor evolution due to loss

of clonal neoantigens (McGranahan and Swanton, 2019; Wolf

et al., 2019). With respect to the immune microenvironment,

differences in immune cell gene expression patterns between

species could confound immune cell comparisons by under- or

overestimating the presence of specific immune cell types.

Despite these potential differences, comparative transcriptomic

analyses of mouse and human immune cells have shown that the

cells in each species exhibit a high degree of global conservation

with one another, and signatures derived from murine immune

cells have provided accurate immune infiltration estimates in

human cancer types (Shay et al., 2013; Varn et al., 2017). Thus,

the estimates in this study provide a baseline for how the relative

fractions of major immune cells compare among adult, pediatric,

and canine gliomas. We would have liked to have done further

immune characterization including expression profiling of

immune checkpoint response markers such as PD-1+ tumor-

infiltrating lymphocytes and PD-L1 immune and tumor expres-

sion, but these antibodies have not been validated in canines.

Moving forward, signatures derived from canine immune cells

will be of value in examining the presence of more specific im-

mune cell types.

In summary, our study shows that the comparative molecular

life history of gliomas details conserved drivers of glioma at both

the genetic and epigenetic levels, with aneuploidy as a major

hallmark of high-grade disease. Our results effectively position

preclinical models of spontaneous canine glioma for use in

understanding glioma drivers, and evaluating therapies targeting

aneuploidy as well as immunotherapies, with relevance to all

human gliomas and pediatric disease in particular.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 antibody Agilent Cat# M725429-2; RRID: AB_2631163

CD79A antibody Agilent Cat# M705029-2; RRID: AB_2244527

CD163 antibody MyBioSource Cat# MBS9409179; RRID: N/A

IBA1 antibody Wako Cat# 019-19741; RRID: AB_839504

CD4 antibody GeneTex Cat# GTX84720; RRID: AB_10727465

CD14 antibody Novus Cat# NB100-77758; RRID: AB_1083332

Biological Samples

Canine Glioma Patient Samples This paper Detailed under Table S1

Critical Commercial Assays

AllPrep DNA/RNA Mini Kit Qiagen N/A

AllPrep DNA/RNA FFPE Kit Qiagen N/A

KAPA Hyper Prep Kit (Illumina) KAPA Biosystems/Roche N/A

SeqCap EZ Canine Exome

Custom Design

Roche Nimblegen canine 140702_canFam3_exomeplus_BB_EZ_HX1

probe set

Nimblegen SepCap EZ Kit Roche Nimblegen N/A

KAPA Stranded mRNA-Seq kit KAPA Biosystems/Roche N/A

Premium RRBS Kit Diagenode N/A

Deposited Data

DNA sequencing data - WGS and Exome This paper NCBI SRA Accession ID: PRJNA579792

RNA sequencing data This paper NCBI SRA Accession ID: PRJNA579792

RRBS sequencing data This paper NCBI SRA Accession ID: PRJNA579792

Software and Algorithms

bwa v0.7.15-r1140 http://bio-bwa.sourceforge.net/

Genome Analysis ToolKit (GATK) v4.0.8.1 https://software.broadinstitute.org/gatk/

Qualimap v2.2.1 http://qualimap.bioinfo.cipf.es/

fastp v0.19.5 https://github.com/OpenGene/fastp

kallisto v0.45.0 https://pachterlab.github.io/kallisto

sleuth v0.30.0 https://pachterlab.github.io/sleuth

FastQC v0.11.7 https://www.bioinformatics.babraham.

ac.uk/projects/fastqc

TrimGalore v0.5.0 https://github.com/FelixKrueger/TrimGalore

Bismark Bisulfite Mapper v0.19.1 https://github.com/FelixKrueger/Bismark

Bowtie2 v2.2.3 N/A

NGSCheckMate v1.0.0 https://github.com/parklab/NGSCheckMate

Mutect2 - GATK4 v4.0.8.1 https://software.broadinstitute.org/gatk/

VarScan2 v2.4.2 https://github.com/dkoboldt/varscan

LoFreq v2.1.3.1 https://github.com/CSB5/lofreq

SomaticSeq v3.1.0 https://github.com/bioinform/somaticseq

Variant Effect Predictor (VEP) v91 https://github.com/Ensembl/ensembl-vep

dNdScv 0.0.1.0 https://github.com/im3sanger/dndscv

MuSiC2 v0.2 https://github.com/ding-lab/MuSiC2

GISTIC2 v2.0.22 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/

GISTICDocumentation_standalone.htm

HMMCopy v1.22.0 http://bioconductor.org/packages/release/

bioc/html/HMMcopy.html
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Continued
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TitanCNA v1.19.1 https://github.com/gavinha/TitanCNA

Snakemake v5.2.1 https://snakemake.readthedocs.io/en/stable/

flowr v0.9.10 https://github.com/sahilseth/flowr

NMF R package v0.21.0 https://cran.r-project.org/web/packages/NMF

Entropy R package v1.2.1 https://cran.r-project.org/web/packages/entropy

outliers R package v0.14 https://cran.r-project.org/web/packages/outliers/

MutationalPattern R package v1.6.2 https://bioconductor.org/packages/release/bioc/

html/MutationalPatterns.html

Palimpsest R package v1.0.0 https://github.com/FunGeST/Palimpsest

BradleyTerryScalable R package 0.1.0.9000 https://cran.r-project.org/web/packages/

BradleyTerryScalable/vignettes/BradleyTerryScalable.

html

DNANexus app for St Jude Cloud

data analysis

v1.1.6 (This paper) https://dxapp.verhaaklab.com/dnanexus_ngsapp

CIBERSORT webserver https://cibersort.stanford.edu
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for data resources should be directed to andwill be fulfilled by the LeadContact, Roel Verhaak (roel.

verhaak@jax.org). This study did not generate new unique reagents.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Canine Patients and Tissue Samples
Tissue samples from canine patients with gliomaswere acquired withmaterial transfer agreements fromAuburn University College of

Veterinary Medicine, Colorado State University, Texas A&MCollege of Veterinary Medicine & Biomedical Sciences, UC Davis School

of Veterinary Medicine and Virginia-MD College of Veterinary Medicine. Tissue samples from resected tumor (n=83) and matched

normal tissue (n=67 or paired cases) were collected at the surgical treatment or immediately following euthanasia. There were

also four additional dog patients where we had adequate DNA and RNA for methylation (n=48) and RNA-seq (n=40) profiling but

unable to do WGS/Exome sequencing because of failed library preparation (Table S1). Matched normal tissue were from post-

necropsy sample of contra-lateral healthy brain tissue (n=38), white blood cells (n=13), and remaining 17 samples from other tissues.

Samples were archived in snap-frozen (n=37/67 paired cases; n=8/16 tumor-only cases) and Formalin-Fixed Paraffin-Embedded

(FFPE, n=30/67 paired cases; n=8/16 tumor-only cases) state. Samples were then shipped to sequencing core facilities for sample

preparation, quality control and sequencing (see STAR Methods Details below).

METHOD DETAILS

Published Data Sources
For comparison to human glioma, we downloaded both - raw sequencing data and processed tables for human pediatric and adult

gliomas with appropriate controlled-data access agreements where needed. We used published mutation rates (Figure 1D) and

mutational signatures (Figure 3) from pan-cancer datasets from adults (n=3,281) and pediatric (n=961) cohorts (Alexandrov et al.,

2013; Bailey et al., 2018; Gröbner et al., 2018). For aneuploidy and molecular life history analysis (details below), we downloaded

raw sequencing data and analyzed whole genomes from 53 pediatric gliomas (Ma et al., 2018; St. Jude Cloud Pediatric Cancer

Genome Project, https://pecan.stjude.cloud), SNP6 data from adult gliomas – IDHwt (n=517), IDHmut-codel (n=171), and

IDHmut-noncodel (n=281) cases (Ceccarelli et al., 2016), as well as whole genomes from 23 adult GBMs (Brennan et al., 2013).

For coding mutation rate calculation, we used a subset of TCGA glioma set where exome/whole genome based variant calls were

available: IDHwt (n=371), IDHmut-non-codel (n=268), and IDHmut-codel (n=169).

Sample Preparation
DNA/RNA extraction - Genomic DNA and total RNA of fresh frozen tissue and FFPE tissue from paraffin scrolls were extracted simul-

taneously using AllPrep DNA/RNAMini Kit (Qiagen) and AllPrep DNA/RNA FFPEKit (Qiagen) according to themanufacturer’s instruc-

tions, respectively. Additional DNase treatment was performed on-column for RNA purification. WGS sample preparation - 200-

400ng of DNA was sheared to 400bp using a LE220 focused-ultrasonicator (Covaris) and size selected using Ampure XP beads

(Beckman Coulter). The fragments were treated with end-repair, A-tailing, and ligation of Illumina compatible adapters (Integrated
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DNA Technologies) using the KAPA Hyper Prep Kit (Illumina) (KAPA Biosystems/ Roche). For FFPE samples, 5 to 10 cycles of PCR

amplification were performed. Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Libraries were

sequenced paired end reads of 151bp on Illumina Hiseq X-Ten (Novogene). WES sample preparation - Sample were prepared as

described above in theWGS sample preparation, targeting 200bp with PCR amplification. Target capture was performed using Seq-

Cap EZ Canine Exome Custom Design (canine 140702_canFam3_exomeplus_BB_EZ_HX1 probe set) (Broeckx et al., 2015) (Roche

Nimblegen). Briefly, WGS libraries were hybridized with capture probes using Nimblegen SepCap EZ Kit (Roche

Nimblegen) according to manufacturer’s instruction. Captured fragments were PCR amplified and purified using Ampure XP beads.

Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Libraries were sequenced paired end of 76bp on

Hiseq4000 (Illumina). RNA-seq sample preparation - RNA-seq libraries were prepared with KAPA Stranded mRNA-Seq kit (Kapa

Biosystem/ Roche) according tomanufacturer’s instruction. First, poly ARNAwas isolated from 300ng total RNA using oligo-dTmag-

netic beads. Purified RNA was then fragmented at 85�C for 6 mins, targeting fragments range 250-300bp. Fragmented RNA is

reverse-transcribed with an incubation of 25�C for 10mins, 42�C for 15 mins and an inactivation step at 70�C for 15mins. This

was followed by second strand synthesis at 16�C, 60 mins. Double stranded cDNA (dscDNA) fragments were purified using Ampure

XP beads (Beckman). The dscDNAwere then A-tailed, and ligated with illumina compatible adaptors (IDT). Adaptor-ligated DNAwas

purified using Ampure XP beads. This is followed by 10 cycles of PCR amplification. The final library was cleaned up using AMpure XP

beads. Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Sequencing was performed on Hiseq4000

(Illumina) generating paired end reads of 75bp. Reduced Representation Bisulfite Sequencing (RRBS) sample preparation - Library

preparation for RRBS was performed using Premium RRBS Kit (Diagenode) according to manufacturer’s instructions. Briefly, 100ng

of DNA was used for each sample, which was enzymatically digested, end-repaired and ligated with an adaptor. Subsequently, 8

samples with different adaptors were pooled together and subjected to bisulfite treatment. After purification steps following bisulfite

conversion, the pooled DNA was amplified with 9-14 cycles of PCR and then cleaned up with Ampure XP beads. Quantification of

libraries were performed using real-time qPCR (Thermo Fisher). Libraries were sequenced single end 101bp on Hiseq2500 (Illumina).

Sequencing Alignments, QC, and Fingerprinting
DNA alignments - DNA alignments for whole genome (WGS) and exome sequencing was done using bwa-mem (version 0.7.15-

r1140) (Fleshner and Chernett, 1997) with -M -t 12 argument and against CanFam3.1 reference genome from UCSC, https://

genome.ucsc.edu/cgi-bin/hgGateway?db=canFam3 (md5: 112bc809596d22c896d7e9bcbe68ede6). For each sample, fastq files

were aligned per read group and then merged using Picard tools (v2.18.0, http://broadinstitute.github.io/picard) SortSam command

to make an interim bam file. Final, analysis-ready bam file per sample – tumor and normal bam, if available – was created by series of

steps following best practices guidelines from GATK4 (version 4.0.8.1) (DePristo et al., 2011), namely MarkDuplicates, Indel

Realignment, and Base Quality Score Recalibration (BQSR). Alignment QC metrics were calculated using GATK4 DepthOfCoverage

(for WGS) and CollectHSMetrics (for exome) as well as Qualimap (version 2.2.1) (Okonechnikov et al., 2016) bamqc for merged bam

files. Coverage statistics were also based on regions of interest (ROIs) which consisted of exonic region-level annotations for bio-

types: protein-coding gene, microrna, lincrna, and pseudogene from Ensembl gene annotations for canine genome (v91 and higher).

We flagged samples as failed QC if merged bam file has a genome-wide coverage of < 30% or > 75% of ROIs have 30% or lesser

coverage. Accordingly, three samples (of three cases) failed QC step and they were removed from all analyses. Note that 83 cases in

patient tissues and samples section represent all cases which passed QC at WGS, exome, RNA-seq, andmethylation level data pre-

processing. RNA alignments - Raw fastq files from paired-end RNA-seq assay for 40 tumor samples and 3 matched normal tissue

samples were first preprocessed through fastp (version 0.19.5) (Chen et al., 2018) to perform read-based quality pruning, including

adapter trimming. Resulting fastq files were then used as input for kallisto quant (version 0.45.0) – a pseudoalignment based method

to quantify RNA abundance at transcript-level in transcripts per million (TPM) counts format. We then used sleuth R package (version

0.30.0) (Pimentel et al., 2017) to output model-based, gene-level normalized TPMmatrix which was also corrected for potential batch

effects due to RNA-seq data derived from two sequencing core facilities and tissue archival (snap-frozen vs FFPE). Detailed work-

flow, including command-line parameters for model fitting are in the software code repository (See Data andCode Availability). RRBS

alignments - Raw fastq files from RRBS assay for 45 tumor samples were processed through FastQC (version 0.11.7, https://www.

bioinformatics.babraham.ac.uk/projects/fastqc) and Trim Galore (version 0.5.0, https://github.com/FelixKrueger/TrimGalore) for

quality control, filtering low quality base calls, and adapter trimming. Trimmed reads were thenmapped to a bisulfite converted refer-

ence genome (canFam3.1, obtained from Ensembl release 85) using the Bismark Bisulfite Mapper (v0.19.1) with the Bowtie2 short

read aligner (v2.2.3) (Krueger and Andrews, 2011), allowing for one non-bisulfite mismatch per read. Cytosine methylation calls were

made for themapped reads using the Bismarkmethylation extractor (version 0.19). The resultingmethylation valueswere obtained as

b-values, calculated as the ratio of methylated to total reads at a given CpG site. DNA fingerprinting – DNA fingerprinting for each of

WGS and exome tumor-normal and tumor-only bamfileswas done usingNGSCheckMate tool (version 1.0.0) (Lee et al., 2017). Germ-

line snps in protein-coding regions was used as a variant reference panel to allow simultaneous fingerprinting of WGS and exome

libraries. NGSCheckMate does sample pairing QC based on shared germline variants found in samples (tumor and normal tissue

from the same patient) and also model difference between samples (or libraries) based on sequencing depth-dependent variation

in allelic fraction of reference variants. Fingerprint results for WGS and exome samples from 81 canine glioma did not show mixture

of tumor-normal or cross-patient sample contamination (See Figure S1F).
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Somatic Variant Calling
Somatic variant calls were called on the merged whole genome and exome bam files using three callers: GATK4 (version 4.0.8.1)

(McKenna et al., 2010) Mutect2 (Cibulskis et al., 2013), VarScan2 (version 2.4.2), and LoFreq (version 2.1.3.1) (Wilm et al., 2012).

Matching and fingerprint validated WGS and exome files per sample were merged using Picard tools (v2.18.0, http://

broadinstitute.github.io/picard), MergeSamFiles command. Three somatic callers were then run in either paired tumor – matched

normal (n=67) or tumor-only (n=14) mode. Mutect2 was first run in panel-of-normals (PON) mode using matched normal

samples. Resulting PON file was used for calling somatic variant calls using Mutect2 in both, paired and tumor-only mode along

with options: –germline-resources 58indiv.unifiedgenotyper.recalibrated_95.5_filtered.pass_snp.fill_tags.vcf.gz –af-of-alleles-not-

in-resource 0.008621. Tumor-only Mutect2 mode was run using default arguments and paired Mutect2 calls had following argu-

ments: –initial-tumor-lod 2.0 –normal-lod 2.2 –tumor-lod-to-emit 3.0 –pcr-indel-model CONSERVATIVE. Throughout the process

of using GATK4 based tools, including Mutect2, we followed best practices guidelines (DePristo et al., 2011) where practical for

canine genome, e.g., in contrast to human genome, population level resources are limited for canine genome. VarScan2 paired

mode was run with a command: somatic and arguments: –min-coverage 8 –min-coverage-normal 6 –min-coverage-tumor 8

–min-reads2 2 –min-avg-qual 15 –min-var-freq 0.08 –min-freq-for-hom 0.75 –tumor-purity 1.0 –strand-filter 1 –somatic-p-value

0.05 –output-vcf 1. VarScan2 tumor-only mode was run using command: mpileup2cns and arguments: –min-coverage 8 –min-

reads2 2 –min-avg-qual 15 –min-var-freq 0.08 –min-freq-for-hom 0.75 –strand-filter 1 –p-value 0.05 –variants –output-vcf 1. LoFreq

paired mode was run using command: somatic and arguments: –threads 4 –call-indels –min-cov 7 –verbose and tumor-only mode

was run using command: call and arguments: –call-indels –sig 0.05 –min-cov 7 –verbose -s. Resulting raw somatic calls - single

nucleotide variants (SNV) and small insertions and/or deletions (Indels) - from three callers were then subject to filtering based on

caller-specific filters and hard filters. Briefly, Mutect2 calls were subject to extensive filtering based on germline risk, artifacts arising

due to sequencing platforms, tissue archival (FFPE), repeat regions, etc. See Data and Code Availability and https://software.

broadinstitute.org/gatk/documentation/article?id=11136) for detailed parameters. VarScan2 somatic filters were applied as per de-

veloper’s guidelines (Koboldt et al., 2013). Hard filters were based upon filtering out variants present in dbSNP and PONs created via

GATK4 Mutect2. Filtered somatic calls from three callers (in VCF version 4.2 format) were then subject to consensus somatic calls

using SomaticSeq (version 3.1.0) (Fang et al., 2015) in majority voting mode with priority given to Mutect2 filtered (PASS) calls fol-

lowed by consensus voting based on calls present in VarScan2 and LoFreq filtered calls. Resulting consensus VCF file for 81 cases

were finally converted to Variant Effect Predictor (VEP version 91) (McLaren et al., 2016) annotated vcfs and Mutation Annotation

Format (MAF, https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format) using vcf2maf utility (https://github.com/mskcc/

vcf2maf). Annotated VCFs and MAFs were used for all of downstream analyses.

Significantly Mutated Genes (SMGs) Analysis
SMG analysis in canine gliomas (Figures 1A, 1C, and 2A) with paired tumor-normal samples (n=57) was performed using dNdS

(Martincorena et al., 2017) and MuSiC2 (version 0.2) (Dees et al., 2012). We excluded tumor-only cases for being conservative in

SMG analysis and minimize false-positives. Also, MuSiC2 required matched normal tissue required matched normal tissue for

SMG analysis. Detailed parameters for SMG analysis are in the software code repository (See Data and Code Availability). Detailed

output from both methods are in Table S2.

Cancer Hallmark Analysis
Cancer hallmarks were defined according to published ten hallmarks (Hanahan andWeinberg, 2011) and one additional hallmark, i.e.

epigenetic (Imielinski et al., 2012). A pool of 268 known glioma (Ceccarelli et al., 2016; Mackay et al., 2017) and pan-cancer driver

genes (Gröbner et al., 2018; Bailey et al., 2018) were mapped to hallmarks following a previously published computer-assisted

manual curation method (Table S4) (Iorio et al., 2018). Based on WHO molecular classification of brain tumors, somatic SNV and

copy-number data from patients with human adult gliomas (AG) (Ceccarelli et al., 2016) were stratified into IDHwt (n=373),

IDHmut-codel (n=169) and IDHmut-noncodel (n=268) subgroups while corresponding data from patients with human pediatric gli-

oma (PG) (Mackay et al., 2017) were subgrouped based on mutations in Histone H3 gene, namely H3mut (n=200) and high-grade

H3wt (n=126). For canine patients with glioma (CG), we used somatic mutations and copy-number calls from 67 cases with paired

tumor-normal samples. For each of the six cohorts coding mutations were mapped to eleven hallmarks and coverage adjusted rela-

tive proportions of patients harboring an alteration in a given hallmark were calculated. For comparisons between cohorts a two-

sided Fisher’s exact test was applied (Table S4).

Quantifying Somatic Mutation Rates
Somaticmutations (SNVs and Indels) rate was estimatedwithin coding genes and adjusted based on relative per-base coverage with

minimum coverage of 30X in coding regions (Figure 1D). Coding mutation rates for human pediatric (n=961) and adult cancers

(n=3,800, includes 811 adult gliomas) were taken from published studies (Ma et al., 2018; Ceccarelli et al., 2016; Gröbner et al., 2018).

Somatic Copy Number Segmentation
Somatic copy-numbers were called for paired tumor-normal cases (n=67) using HMMCopy tool (version 1.22.0) using author’s

recommendations. In brief, GC counts and mappability files for CanFam3.1 genome were generated with 1000 bp window size.

Read counts for each of tumor and normal bam files were generated using 1000 bp window size. Resulting count, mappability
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and count files were feed into HMMCopy algorithm (http://bioconductor.org/packages/release/bioc/html/HMMcopy.html) and

segmentations were called using Viterbi algorithm. Segmented copy number calls were used to generate Integrated Genome Viewer

(IGV) copy-number plots and GISTIC2 (version 2.0.22) based somatic copy number significance (Mermel et al., 2011), including

calling gene-level deep deletions, loss-of-heterozygosity (LOH), and amplifications (Figure 2A) as well as inferring aneuploidy metrics

(Figures 2B and 2C). Segmented copy number for pediatric gliomas (n=53) were called by using cloud-based TitanCNA workflow

(https://dxapp.verhaaklab.com/dnanexus_ngsapp). Segmented copy number for adult gliomas were derived from SNP6 based

platform from the TCGA Broad Firehose platform (version stddata__2016_01_28) with following download urls: http://gdac.

broadinstitute.org/runs/stddata__2016_01_28/data/GBM/20160128/gdac.broadinstitute.org_GBM.Merge_snp__genome_wide_snp_

6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz and http://gdac.

broadinstitute.org/runs/stddata__2016_01_28/data/LGG/20160128/gdac.broadinstitute.org_LGG.Merge_snp__genome_wide_

snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz Only pri-

mary tumor cases from TCGA GBM (n=577) and TCGA LGG (n=513) cohort were used for downstream analyses, i.e., pathway

analysis (Figure 1C) and aneuploidy metrics (Figures 2B–2D).

Allele Specific Copy-Number Analysis
We derived allele-specific copy numbers and copy-number based clonality inference (including purity and ploidy estimates) using

TitanCNA algorithm (version 1.19.1) (Ha et al., 2014). Snakemake (version 5.2.1) based workflow (Koster and Rahmann, 2018) was

implemented using default arguments and genome-specific germline dbSNP resource for WGS paired tumor-normal samples

from 67 canine patients. For pediatric gliomas (n=53) and adult gbms with WGS data (n=23), allele-specific copy-number calls

were used from TitanCNA workflow. Allele-specific copy-numbers were used for mutational signature and molecular timing analysis

(Figure 3).

Aneuploidy Metrics
The simplest metric of aneuploidy was computed by taking the size of all non-neutral segments divided by the size of all segments.

The resulting aneuploidy value indicates the proportion of the segmented genome that is non-diploid. In parallel, an arm-level

aneuploidy score modeled after a previously described method was computed (Taylor et al., 2018). Briefly, adjacent segments

with identical arm-level calls (-1, 0 or 1) were merged into a single segment with a single call. For each merged/reduced segment,

the proportion of the chromosome arm it spans was calculated. Segments spanning greater than 80% of the arm length resulted

in a call of either -1 (loss), 0 (neutral) or +1 (gain) to the entire arm, or NA if no contiguous segment spanned at least 80% of the

arm’s length. For each sample the number of arms with a non-neutral event was finally counted. The resulting aneuploidy score is

a positive integer with a minimum value of 0 (no chromosomal arm-level events detected) and a maximum value of 38 (total number

of autosomal chromosome arms – given all of canine chromosomes are either acrocentric or telocentric).

Clustering Shared Syntenic Regions
Shared syntenic regions between CanFam3.1 and hg19 reference genome were downloaded from Ensembl BioMart (version 94)

database using orthologous mapped Ensembl gene ids. Arm-level synteny was based on arm-level aneuploidy scores of shared

syntenic regions in the respective, canine and human genomes. Hierarchical clustering of proportion of patients per molecular

subtype having syntenic arm-level aneuploidy was then carried out for each of canine, human pediatric and adult cohort (Figure 2C).

Estimating Intra-tumoral Heterogeneity
We estimated patient-level ITH based onwhole-genome derived subclonal structure and number of somatic variants in each of these

subclones. Subclonal structure and cellular prevalence or cancer cell fraction of each tumor subclone (and underlying somatic var-

iants) was derived using TITAN allele-specific copy number calls. Since accuracy of inferred subclonal structure depends largely on

sequencing read depth and number of somatic variants per inferred subclone, we limited estimation of subclonal structure for

maximum five subclones per patient given a minimum sequencing read depth of 30X for whole genome data we had across all three

cohorts. Shannon entropy was then calculated using entropy function in the R package: entropy by taking number of somatic variants

per subclone per patient as a vector. A resulting Shannon entropy value was used to plot figures along with cancer cell fraction and

number of clones derived per patient. We acknowledge that our estimation of ITH and resolving subclonal structure can be improved

with higher depth of sequencing (100X or more) to detect subclonal structures (number of clones) (Deshwar et al., 2015).

Mutational Signature Analysis
Mutational signature analysis was performed in two-parts. First, de-novo signatures (Figure 3B) were constructed for canine (n=81),

human pediatric (n=53) and adult cohort (n=23) using somatic snvs from whole-genome data. Signatures were constructed using

non-negative matrix factorization (nmf R package, version 0.21.0) with brunet approach and 100 iterations with expected range of

signatures between 2 to 10. Optimal signatures were then selected using nmfEstimateRank function to match number of de-novo

signatures (clusters) – 1 where inflection point for cophenetic correlation coefficient was observed. Accordingly, three de-novo sig-

natures were found in canine and human pediatric gliomas while five in adult glioblastoma cohort. In the second part, known human

mutational signatures fromCOSMIC (v2, n=30) and published pediatric cancer signature from two studies, T1 to T11 (Ma et al., 2018)

and P1 (Gröbner et al., 2018) were pooled together and used to deconvolute (MutationalPattern R package, version 1.6.2) mutational
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trinucleotide context (n=96) from somatic snvs in each of three cohorts. Somatic ultra-hypermutation cases from pediatric (n=3) and

adult cohort (n=1) were excluded from signature analysis. Cosine similarities of known signatures with de-novo signatures was then

calculated and clustered using hierarchical clustering (Figure 3B). Absolute and relative contribution of known signatures per sample

was then quantified using fit_to_signatures function which finds the linear combination of signatures that closely resembles 96

context based mutational matrix by solving the nonnegative least-squares constraints problem. We then selected top contributing

signatures per cohort based on signatures which contributed per sample to higher than 3rd quartile of median value of each signa-

ture’s contribution (rowMedian) per cohort (Figure S3A). Top contributing signatures were further calculated using outlier profling on

canine patients showing highest mutational load (>3rd quartile of median coding mutation rate per megabase) and plotted in Fig-

ure 3A. Outlier sample detection was done using car::outlierTest function in R to label true outliers from entire cohort (2 cases) while

correcting for confounding effects due to type of tissue archival (snap-frozen vs ffpe) and analysis type (tumor-matched normal

versus tumor-only somatic variant calling). This was followed by second run of outlier by first excluding true outliers (2 cases),

and then labelling outliers (six cases) based on chi-squared statistics using outliers::scores function in R. Signatures contributing

to driver mutations (Figure 3C) were calculated based on first getting relative proportion of trinucleotide context per snv and then

finding known signatures withmaximum value for the same trinucleotide context. Known signatures were combined to a single group

where they are shown in literature as potential underlying process, e.g., aging group is associated with COSMIC signature 1 and 5,

and show significant cosine similarity (> 0.9) with pediatric signatures T1 and T4, respectively. Table S5 provides mapping between

signature and known/proposed mechanisms, if any.

Molecular Timing Analysis and Natural History of Tumors
Probabilistic estimation of relative timing of driver mutations (among 79 observed somatic snvs in cancer driver genes) was based on

existing methods (Gerstung et al., 2017; Jolly and Van Loo, 2018) with several steps carried out using Palimpsest R package (version

1.0.0; https://github.com/FunGeST/Palimpsest) (Shinde et al., 2018) and custom R scripts based on published approach

(McGranahan et al., 2015): First step involved categorizing somatic drivers into clonal vs subclonal events using estimated cancer

cell fraction (CCF) which is estimated fraction of cancer cells with a somatic snv. CCF per somatic snv was a product of variant allelic

fraction (VAF) of a somatic snv, adjusted by local copy number of gene locus and whole tumor sample (ploidy) as well as purity

estimate (tumor cell content) inferred from TitanCNA algorithm (Detailed under copy number estimation section above). A clonal

(early) vs subclonal (late) mutation was then classified based on upper boundary of CCF was above 0.95 (clonal) or not (subclonal).

Second, we timed copy number gain and copy-neutral LOH regions based on VAF of somatic snvs in these copy regions, i.e., early

mutations prior to copy gain will have higher VAF relative to VAF of late mutations after copy gain. Third, we ordered mutations in four

sequential categories: early clonal, early subclonal, late clonal, and late subclonal. We note here that early subclonal and late clonal

categories are result of underlying parallel and/or convergent evolution of multiple clones (Venkatesan and Swanton, 2016) and/or a

technical limitation (given �60X depth of merged bam files and lack of spatial sequencing data) in resolving polyclonal structure of a

tumor sample (Deshwar et al., 2015). We then tally frequency of each of these four categories per somatic driver mutation and get the

average frequency of each category per driver mutation at cohort (canine, pediatric, adult) level. These average frequencies are

converted to winning tables, similar to sports statistics where each driver mutation competes with remaining driver mutations

with winning being an early somatic event based on order of events using clonality (Jolly and Van Loo, 2018) (step 3). Finally, a winning

table is then passed to Bradley-Terry model (BradleyTerryScalable R package, version 0.1.0.9000) to estimate winning probability

(driver event being an early event) based on a Bayesian maximum a posteriori probability (MAP) estimate. Resulting winning prob-

ability per driver mutation is subtracted from 1 to plotmultiple density plots (ggridgesRpackage, version: 0.5.1.9000) with X-axis now

showing a probability of event being a late event (Figure 3D). We note that density plots are based on kernel density estimates and

thus, may extend their tails (probability distribution) beyond 1 or less than zero (https://serialmentor.com/dataviz/histograms-

density-plots.html).

Class Prediction Using Methylation Data
To compare the methylation patterns of human and canine glioma, the LIBLINEAR library was used to fit an L2-regularized logistic

regression classifier. Model training and validation was performed on the human glioma samples and normal controls in the

GSE109381 dataset (Capper et al., 2018), with the methylation status of CpGs located in regions of the human genome orthologous

to canine CpG islands used to predict DNAmethylation-based subtypes of glioma. Themethylation categories designated as regres-

sion outcome variables were derived from the World Health Organization classification of gliomas: IDH-wild-type adult glioma,

IDH-mutant, 1p/19q-intact adult glioma, IDH-mutant, 1p/19q-codeleted adult glioma, adult normal control, pediatric glioma, and

pediatric normal control. After model fitting, the logistic regression classifier was applied to the canine samples, using the b-values

of CpGs orthologous to the selected 11,495 Illumina 450K probes as input data. For classifier CpG sites in the canine samples

with no methylation observations, b-values were predicted using the DNA module of the DeepCpG algorithm, a deep learning algo-

rithm that predicts methylation state based on local DNA sequence context (Angermueller et al., 2017). The logistic regression

classifier outputs the probability that a sample matches a given methylation category. Category probabilities were calculated for

the canine samples, and these probabilities were compared with sample age, anatomical location, tumor grade, tumor purity, and

mutation rate (Figure 4).
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Immunohistochemistry
Staining

Hematoxylin & Eosin staining was used to classify glioma grade and lineage. The immunohistochemistry panel included those

antibodies that have been documented to work in canine tissues and include myeloid microglia/macrophages (IBA1), monocytes

(CD14) and their M2 skew subtype (CD163), and lymphoid T cells (CD3) and B cells (CD79a). Slides with 5um sections, were depar-

affinized and rehydrated in a dry incubator (60�C for 1 hour), xylene, and histological grade ethanol. Antigen retrieval was performed

using citrate buffer and a pressure cooker at 120�C23 for 12minutes. Quenching for endogenous peroxidase was performedwith 3%

H2O2 for 15minutes at room temperature. Non-specific binding wasminimized using ready-to-use protein blocker (Dako) applied for

15 minutes before the application of the primary antibody overnight at 4�C. All the washing was done using 1x T-PBS buffer mixed

with 0.1% Tween 20. The biotinylated secondary antibody was applied for 30minutes at room temperature followed by three washes

with buffer for 5 minutes each. Color development was performed using the DAKO DAB kit and color change was monitored until an

appropriate detectable level was achieved (10-60 sec depending on the antibody). Slides were counterstained with hematoxylin

(25 seconds) and bluing buffer, then rehydrated and cover-slipped with long lasting mounting solution. The immunohistochemistry

quantification were done blindly relative to the tumor pathology. Scanning and tissue segmentation - Scanning and analysis were

performed using the PerkinElmer Vectra Automated Quantitative Pathology Imaging System and the inForm Cell Analysis software

(ver 2.4). Slides were scanned twice on low- and high-power fields as follows: the first scan was of the whole slide on low power field

(10x) for manual tissue segmentation to identify three tumor regions/categories as necrotic center, tumor and invasive edge under the

neuropathologist’s supervision/direction. For each region, every fourth field was imaged (25%) on high-power field (20x) and resulted

in 21 to 274 fields per slide, which varies according to the size of the tissue and presence or absence of necrosis. For the training set,

heterogeneous fields were randomly selected to include tissue, non-tissue and damaged areas. Hematoxylin and DAB was used

to identify the nuclei. Positive and negative cells were distinguished visually and three optical densities (OD) thresholds were set

accordingly. The thresholds allowed 4-bin (0 = negative, +1 = weak positive, +2 = intermediate, +3 = strong positive) sorting of cells

depending on the positivity and its intensity. The intermediate positivity threshold was calculated as the midpoint after setting

the lower and higher threshold. The algorithm of the training set was applied for all the high-power fields captured. The results

were inspected and the nonspecific and defective fields were removed before compiling the dataset. The same process was applied

for all seven markers (Figure 5).

CIBERSORT Based Expression Analysis
Processed RNA-seq expressionmatrices from canine (n=40; 25 HGG, 14 LGG, 1 unknown grade), adult (n=703; 529 LGG, 174GBM),

and pediatric glioma (n=92; 42 LGG, 50 HGG) were each run as separate jobs into the CIBERSORT webserver (https://cibersort.

stanford.edu) and processed in relative mode using the following parameters: Signature Genes: LM22 CIBERSORT default,

Permutations run: 100, Quantile normalization disabled (Newman et al., 2015). The resulting cellular fraction tables were then

collapsed from 22 cell types into 11 based on lineage, using groupings from a prior publication (Gentles et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 3.6.1. Statistical details for analyses are described in the respective sub-section

under the Method Details section above and summarized in figure legends. p value of <0.05 were considered statistically significant.

No statistical methods were used to predetermine study sample size.

DATA AND CODE AVAILABILITY

Sequencing data generated during this study is available in the Binary Alignment Map (BAM) format at the NCBI SRA database

with the BioProject accession ID PRJNA579792 [URL: https://dataview.ncbi.nlm.nih.gov/object/PRJNA579792]. Software code

used to generate figures is available at https://github.com/TheJacksonLaboratory/canineglioma and documented at the URL,

https://canineglioma.verhaaklab.com.
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