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SUMMARY
We leveraged IDHwild-type glioblastomas, derivative neurospheres, and single-cell gene expression profiles
to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and clas-
sical. Transcriptomic subtypemultiplicity correlated with increased intratumoral heterogeneity and presence
of tumormicroenvironment. In silico cell sorting identifiedmacrophages/microglia, CD4+ T lymphocytes, and
neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macro-
phages/microglia infiltration. Longitudinal transcriptome analysis showed that expression subtype is re-
tained in 55% of cases. Gene signature-based tumor microenvironment inference revealed a decrease in
invadingmonocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recur-
rence. Hypermutation at diagnosis or at recurrence associated with CD8+ T cell enrichment. Frequency of M2
macrophages detection associated with short-term relapse after radiation therapy.
INTRODUCTION

The intrinsic capacity of glioblastoma (GBM) tumor cells to infil-

trate normal brain impedes surgical eradication and predictably

results in high rates of early recurrence. To better understand de-
Significance

Glioblastoma expression subtypes have been related to geno
tumor microenvironment. We defined tumor-intrinsic gene ex
immune environment in shaping the tumor cell transcriptome. N
rophages/microglia. Comparison of matching primary and rec
mor evolution, including expression subtype switching in near
environmental components and treatment response. Charac
tumor microenvironment aids in designing more effective imm
scriptional and cellular landscape of IDH wild-type glioblastom
sion datasets are accessible through http://recur.bioinfo.cnio.
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terminants of GBM tumor evolution and treatment resistance,

The Cancer Genome Atlas Consortium (TCGA) performed

high-dimensional profiling and molecular classification of nearly

600 GBM tumors (Brennan et al., 2013; Cancer Genome Atlas

Research, Network, 2008; Ceccarelli et al., 2016; Noushmehr
mic abnormalities, treatment response, and differences in
pression subtypes, which establishes a role for the tumor
otably,NF1 inactivation resulted in chemoattraction of mac-
urrent gliomas elucidated treatment-induced phenotypic tu-
ly half of our cohort, as well as associations between micro-
terization of the evolving glioblastoma transcriptome and
unotherapy trials. Our study provides a comprehensive tran-
a during treatment-modulated tumor evolution. All expres-
es/.
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et al., 2010; Verhaak et al., 2010). TCGA identified common mu-

tations in genes such as TP53,EGFR, IDH1, andPTEN, as well as

the frequent and concurrent presence of abnormalities in the

p53, RB, and receptor tyrosine kinase pathways. Unsupervised

transcriptome analysis also revealed four clusters, referred to

as classical (CL), mesenchymal (MES), neural (NE), and proneu-

ral (PN), which were tightly associated with genomic abnormal-

ities (Verhaak et al., 2010). The PN and MES expression sub-

types have been most consistently described in the literature

with PN relating to a more favorable outcome and MES relating

to poor survival (Huse et al., 2011; Phillips et al., 2006; Zheng

et al., 2012), but these findings were affected by the relatively

favorable outcome of IDH mutant GBMs which are consistently

classified as PN (Noushmehr et al., 2010; Verhaak et al., 2010).

PN-to-MES switching upon disease recurrence has been impli-

cated in treatment resistance in GBM relapse (Bao et al., 2006;

Bhat et al., 2013; Ozawa et al., 2014; Phillips et al., 2006), but

the frequency and relevance of this phenomenon in glioma pro-

gression remains ambiguous.

GBM tumor cells, along with the tumor microenvironment,

together create a complex milieu that ultimately promotes tumor

cell transcriptomic adaptability and disease progression (Olar

and Aldape, 2014). The presence of tumor-associated stroma re-

sults in an MES tumor gene signature and poor prognosis in co-

lon cancers (Isella et al., 2015). Furthermore, the association be-

tweenMES gene expression signature and reduced tumor purity

has been identified as a common theme across cancers (Marti-

nez et al., 2015; Yoshihara et al., 2013). Tumor-associated

macrophages, including either those of peripheral origin or rep-

resenting brain-intrinsic microglia in glioma (Gabrusiewicz

et al., 2016; Hambardzumyan et al., 2015), have been proposed

as regulators of PN-to-MES transition through nuclear factor kB

activation (Bhat et al., 2013) and may provide growth factor-

mediated proliferative signals which could be therapeutically tar-

geted (Patel et al., 2014; Pyonteck et al., 2013; Yan et al., 2015).

Here, we explored the properties of the microenvironment in

different GBM gene expression subtypes before and after thera-

peutic intervention.
RESULTS

Transcriptomic Analysis of Glioma Single Cells,
Neurospheres, and Tumor Biopsies Identifies GBM-
Specific Intertumoral Heterogeneity
We set out to elucidate the tumor-intrinsic and tumor microenvi-

ronment-independent transcriptional heterogeneity of GBMs by

identifying genes uniquely expressed by glioma cells and not by

tumor-associated host cells. We performed RNA sequencing of

133 single cells isolated from three GBMs (Lee et al., 2017), and

compiled transcriptomes of an additional 672 single cells iso-

lated from five GBMs (Patel et al., 2014). A set of 596 out of

the 805 single cells passed quality control procedures and

were determined to be single glioma cells (SGCs) (Figure S1A).

We observed that 14,656 of 22,870 unique genes were ex-

pressed in at least 5% of the 596 SGCs and were considered

candidate bona fide glioma genes (BFGs) (Figure S1B).

To filter genes that were expressed by both GBM cells and the

tumor microenvironment, we collected a cohort of 37 GBMs

from which we derived glioma sphere-forming cell cultures

(GSCs). Following RNA sequencing of this set, we performed

pairwise gene expression comparison and identified 3,099

genes significantly overexpressed in GBM compared with their

derivative GSCs (false discovery rate [FDR]-adjusted t test p

value <0.01). Removing these candidate microenvironment

marker genes reduced the BFG list to 13,165 genes (Figure S1C).

Finally, we analyzed the RNA sequencing data of 30 cellular

tumors and 19 matching leading edges of eight GBM surgery

specimens from the Ivy Glioblastoma Atlas Project (Ivy

GAP, http://glioblastoma.alleninstitute.org/). Cellular tumors

are considered near 100% tumor cells versus no more than

10% tumor cells in the leading edge. We identified 5,978 genes

significantly greater expressed in leading edge compared with

matching cellular tumor (FDR-adjusted t test p values <0.01), re-

sulting in discarding 1,636 genes from the BFG list (Figure S1D).

Of the 11,529 genes on the resulting BFG list, 7,425 genes are

represented on the Affymetrix U133A microarray used to profile

the TCGA GBM cohort (Figures 1A and S1E; Table S1).
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Figure 1. Molecular Classification of IDH-WT GBMs

(A) Filtering tumor-associated microenvironment genes.

(B) Defining an IDH-WT GBM cohort in TCGA.

(C) Overview of NMF clustering procedures.

(D) Heatmap of 50-gene signatures by gene expression subtype. Representative genes are shown for each subtype.

(E) Frequency of subtype-related somatic genomic alterations. The chi-square test was used to calculate the distribution difference among three subtypes per

genomic variant. See also Figure S1, Tables S1 and S2, and Method S1.
GBMs with IDH mutations (IDHmut) represent 5% of the

cases, and have distinct biological properties and confer favor-

able clinical outcomes compared with IDH wild-type (IDH-WT)

GBMs (Brennan et al., 2013; Cancer Genome Atlas Research

Network et al., 2015; Ceccarelli et al., 2016; Noushmehr

et al., 2010). Using the filtered BFG/U133A set, we performed

consensus non-negative matrix factorization clustering to iden-
44 Cancer Cell 32, 42–56, July 10, 2017
tify three distinct subtypes comprising 369 IDH-WT GBMs (Fig-

ures 1B and 1C; Table S1). When comparing the clustering result

with the previously defined PN, NE, CL, and MES classification

(Brennan et al., 2013; Verhaak et al., 2010), the three subtypes

were strongly enriched for MES, PN, and CL GBMs, respectively

(Figure S1F). Consequently, we designated the groups as MES,

PN, and CL. None of the three subtypes were enriched for the NE



subtype, suggesting the NE phenotype is non-tumor specific.

The NE subtype has previously been related to the tumor margin

where increased normal NE tissue is likely to be detected (Gill

et al., 2014; Sturm et al., 2012), and such contamination might

explain why the NE subtype was the only subtype to lack charac-

teristic gene abnormalities (Brennan et al., 2013; Li et al., 2013).

To be able to classify external GBM samples, we implemented a

single sample gene set enrichment analysis (ssGSEA)-based

equivalent distribution resampling classification strategy using

50-gene signatures for each subtype (Figure 1D and Table S1)

to assign each sample three empirical classification p values

by which we determined the significantly activated subtype(s).

The overlap between 50-gene signatures and the previously re-

ported transcriptional subtype signatures (Verhaak et al., 2010)

ranged from 42% to 54% (Figure S1G). We prepared an R-library

to enable others to evaluate our approach (Method S1). To

assess the robustness of our GBM subtype classification

method, we compared cluster assignments of 144 TCGA GBM

samples profiled using both RNA sequencing and Affymetrix

U133A microarrays, and the assessment revealed 93% concor-

dance (Figure S1H; Table S2). The 93% concordance was an

improvement over the 77% subtype concordance determined

using previously reported methods (Verhaak et al., 2010). In

fact, classifying TCGA GBMs using the updated 50-gene signa-

tures resulted in classification concordances ranging from 93%

to 100% when comparing across different batches, different

compositions of IDH-WT/IDHmut cases, and different RNA

sequencing expression measurements (Figures S1I–S1K).

Notably, we found high classification stability in small sample

sizes, such as 85% concordance in cohorts of ten randomly

selected samples (Figure S1L). We also evaluated the distribu-

tion of somatic variants across the three molecular subtypes

(Figure 1E) and confirmed the strong associations between sub-

types and genomic abnormalities in previously reported driver

genes (Brennan et al., 2013; Verhaak et al., 2010).

Multi-activation of Subtype Signatures Associated with
Intratumoral Heterogeneity
We observed that 29/369 (8%) TCGA samples showed signifi-

cant enrichment of multiple ssGSEA scores (empirical classifica-

tion p value <0.05), suggesting that these cases activate more

than one transcriptional subtype (Figure 2A). To quantify such

transcriptional heterogeneity, a score ranging from 0 to 1 was

defined to quantitatively evaluate the simplicity of subtype acti-

vation based on order statistics of ssGSEA score. Samples

with high simplicity scores activated a single subtype and those

with lowest simplicity scores activated multiple subtypes. All

multi-subtype TCGA samples scored simplicities of less than

0.05 (Figure 2A). To determine whether transcriptional heteroge-

neity associated with genomic intratumoral heterogeneity, we

correlated simplicity scores, total mutation rates, and subclonal

mutation rates. Included in the analysis were 224 TCGA GBMs

with available whole-exome sequencing data (Kim et al., 2015),

and ABSOLUTE (Carter et al., 2012) determined high tumor pu-

rity (>0.7) to equalize the mutation detection sensitivity (Aran

et al., 2015). Although not significant (Wilcoxon rank test p value=

0.30), the total mutation rate was less in the bottom 50% of sam-

ples with lowest simplicity scores versus the top 50% with high-

est simplicity scores. Meanwhile, the subclonal mutation rate
and fractionwas significantly higher (Wilcoxon rank test p value =

0.03 and 0.02, respectively) in samples with lowest simplicity

scores (Figure 2B and Table S3), suggesting that increased intra-

tumoral heterogeneity associates with increased transcriptional

heterogeneity.

We compared outcomes among the three transcriptional

groupsandobservednosignificantdifferences (FigureS2A).How-

ever, upon restricting the analysis to those samples with high

simplicity scores (>0.99, n = 74, top 20% cases), we discovered

median survival of 11.5, 14.7, and 17.0 months in MES, CL, and

PNcases, respectively,which revealedasignificant survival differ-

ence between MES and non-MES cases (log rank test, p value =

0.03) (Figure 2C and Table S4). Consistent with this trend, greater

simplicity scores correlated with relatively favorable outcome

within thePNsubtype,while outcome remainedunchangedwithin

the CL subtype and the MES subtype (Figures S2B–S2D).

Single GBM cell RNA sequencing recently suggested that

GBMs are comprised of a mixture of tumor cells with variable

GBM subtype footprints (Patel et al., 2014). Within this dataset,

we compiled the RNA-sequenced transcriptomes of 501 SGCs

in addition to the bulk tumor derived from five primary GBMs

(Table S4) to investigate the intratumoral transcriptional hetero-

geneity at the SGC level. In four of five cases (MGH26,

MGH28, MGH29, and MGH30), the bulk tumor samples were

classified in the same primary subtype as themajority of their sin-

gle cells (Figure 2D). Our analysis suggests that the heterogene-

ity observed at the single-cell level is captured in the expression

profile of the bulk tumor.

Transcriptional Subtypes Differentially Activate the
Immune Microenvironment
Despite restricting the cluster analysis to genes exclusively ex-

pressed by GBM cells, we found that tumor purity predictions

based on ABSOLUTE were significantly reduced in GBM classi-

fied as MES (Figure 3A). This was corroborated by gene expres-

sion-based predictions of tumor purity using the ESTIMATE

method (Student’s t test p value <2.23 10�16; Figure 3B) (Yosh-

ihara et al., 2013). The ESTIMATEmethod has been optimized to

quantify tumor-associated fibroblasts and immune cells (Yoshi-

hara et al., 2013), and the convergence of decreased ABSOLUTE

and decreased ESTIMATE tumor purity confirms previous indi-

cations of increased presence of macrophages/microglia and

neuroglial cells in MES GBM (Bao et al., 2006; Engler et al.,

2012; Gabrusiewicz et al., 2016; Ye et al., 2012). The mean

simplicity score of samples classified as MES was 0.48, which

was significantly less than mean simplicity scores of samples

classified as PN (Wilcoxon rank test p value <0.003) and CL (Wil-

coxon rank test p value <1.13 3 10�5), confirming increased

transcriptional heterogeneity.

Tumor-associated macrophages are a major source of tumor-

associated non-neoplastic cells. In the brain, macrophages can

be categorized as microglia, the resident macrophages in the

CNS, and circulation-derived monocytes. Comparison of tran-

scriptional levels of themacrophages/microglial markers integrin

subunit alpha M (ITGAM, also known as CD11B) and allograft in-

flammatory factor 1 (AIF1, also known as IBA1) in 37 GBM-neu-

rosphere pairs revealed that the two genes are not expressed in

cultured cells but were highly transcribed in GBM, in particular in

those classified as MES (Figure 3C). We found increased ITGAM
Cancer Cell 32, 42–56, July 10, 2017 45
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Figure 2. Multi-activation of Transcriptional Subtypes Associated with Intratumoral Heterogeneity

(A) The expression profiles of 369 IDH-WT GBMs were analyzed using Affymetrix U133A. The –log(empirical p value) of raw ssGSEA enrichment scores at each

signature are shown as heatmaps, with dark blue representing no activation and bright red as highly activated. Yellow stars indicate the secondary activated

subtypes (empirical p value <0.05). For each panel, the first row shows simplicity score, and the second row indicates transcriptional subtype.

(B) Comparison of mutation rate, subclonal mutation rate, and subclonal mutation fraction between IDH-WT GBMs with high and low simplicity scores. The

p values were calculated usingWilcoxon rank test and shown at the top of each panel. Boxplots represent the 25th and 75th percentiles, with midlines indicating

the median values, and points within the boxes indicating the mean values. Whiskers extend to the lowest/highest values of the data sample excluding outliers.

The notch displays the 95% confidence interval around the median.

(C) Kaplan-Meier survival curve by subtype.

(D) Transcriptome classification of five bulk tumor samples and 501 single GBM cells derived from them. The top two rows of each panel show the dominant and

secondary subtype of the GBM tumor bulk. The heatmap of each panel shows the empirical –log(p value) of the ssGSEA scores of the derived single GBMcells on

each of the three subtype signatures. The bottom row shows the subtype distribution of derived single GBM cells within the same GBM tumor of origin. See also

Figure S2 and Tables S3 and S4.
and AIF1 protein expression in six GBM transcriptionally charac-

terized as MES, compared with 12 non-MES GBM (Figure 3D).

An unbiased quantification of macrophage/microglial (AIF1+)

percentage using the Caliper Vectra image system and InForm

software (Figures S3A and S3B) in 12 of these cases showed
46 Cancer Cell 32, 42–56, July 10, 2017
that the frequency of AIF1+ cells was significantly greater in

MES (n = 4) versus non-MES (n = 8) (median 38% versus 16%,

Wilcoxon rank test p value <2.23 10�16) (Figures S3A and S3B).

To comprehensively determine the cellular components

of the tumor microenvironment across different transcriptional
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Figure 3. Transcriptional Subtypes Differentially Activate the Immune Microenvironment

(A and B) Tumor purity of 364 and 369 TCGA IDH-WT GBM samples was determined by ABSOLUTE (A) and ESTIMATE (B), respectively. The difference in tumor

purity between subtypes was evaluated using a two-sample Student’s t test.

(C) Comparison of ITGAM and AIF1 gene expression levels between GBM and derived neurosphere models. N.MES indicates non-MES cases.

(D) The upper panel shows ssGSEA enrichment scores and associated expression subtype classifications. The bottom panels display the protein expression of

the microglial markers ITGAM and AIF1, the astrocyte marker glial fibrillary acidic protein (GFAP), and the loading control tubulin and vinculin.

(E) Comparison of immune cell fractions among subtypes. Immune cell fractions were estimated using CIBERSORT and corrected using ABSOLUTE purity

scores per sample. The distribution of immune cell fractions of 86 PN, 136 CL, and 104 MES IDH-WT GBMs with simplicity score >0.05 are shown by purple, sky

blue, and green boxplots, respectively. Median value difference of cell fraction among subtypes was evaluated using Mood’s test. Boxplots represent 25th and

75th percentiles, with midlines indicating themedian values and points within the boxes indicating themean values. Whiskers extend to the lowest/highest values

of the data sample excluding outliers (A–C and E). See also Figure S3 and Table S5.
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subtypes, we used the CIBERSORT in silico cytometry method

(Newman et al., 2015). Upon filtering samples with classification

simplicity scores less than 0.05, we evaluated 22 different im-

mune cell types in 86 PN, 137 CL, and 106 MES samples (Table

S5). We found that the tumor-promoting M2 macrophage gene

signature (Hambardzumyan et al., 2015) showed a greater asso-

ciation with the MES subtype (13%) relative to the PN (5%) and

CL (6%) subtypes (Figure 3E), consistent with previous analysis

of the TCGA database (Doucette et al., 2013; Gabrusiewicz et al.,

2016). In addition to the M2 macrophage gene signature, there

was also a significantly greater fraction of MES samples that ex-

pressed the proinflammatory M1 macrophage (Wilcoxon rank

test p value = 0.004) and neutrophil (Wilcoxon rank test p value =

1.313 10�12) gene signatures. Meanwhile, the activated natural

killer cell gene signature (Wilcoxon rank test p value = 5.53 10�4)

was significantly reduced in the MES subtype and the resting

memory CD4+ T cell gene signature (Wilcoxon rank test p value =

2.56 3 10�7) was significantly reduced in the PN subtype.

The association of the tumor-intrinsic MES GBM subtype with

increased levels of M2 macrophages may imply that these

GBMs are candidates for therapies directed against tumor-asso-

ciated macrophages (Pyonteck et al., 2013). Likewise, the acti-

vated dendritic cell gene signature (Wilcoxon rank test p value =

3.0 3 10�4) (Figure 3E) was significantly greater in the CL sub-

type, suggesting that this subtype may benefit from dendritic

cell vaccines (Palucka and Banchereau, 2012). This result

contrasts a previous study suggesting that MES GBM patients

treated with dendritic cell vaccination were likely to benefit (Prins

et al., 2011).

Molecular classification based on tumor-specific DNAmethyl-

ation profiles identified six distinct subtypes of primary glioma,

including three IDHmut classes (M1-M3) and three IDH-WT

groups (M4-M6) (Ceccarelli et al., 2016). We compared the fre-

quency of immune cells across the three IDH-WT DNA methyl-

ation subtypes consisting of 87, 157, and 33 cases in LGm4,

LGm5, and LGm6, respectively (Figure S3C). Among the 22 im-

mune cell types we examined, we observed increases in neutro-

phils (Mood’s test p value <0.01) andM2macrophages in LGm5.

LGm5was found to be enriched for the MES expression subtype

in the original publication.

NF1 Deficiency of Tumor Cells Increases Infiltration of
TAMs/Microglia
MES GBMs frequently deactivate NF1 through genomic copy

loss or somatic mutations (Verhaak et al., 2010). Formation of

dermal neurofibromas in the context of NF1 loss of heterozygos-

ity has been reported to be context and microenvironment

dependent, suggesting that NF1 may play a role in organizing

the microenvironment (Le et al., 2009). NF1-deleted/mutated

GBMs showed reduced tumor purity compared with GBMs

with wild-type NF1 (Wilcoxon rank test p value = 7 3 10�4),

and specifically within the MES subtype (Wilcoxon rank test p

value = 0.017) (Figure S4A). Consequently, the M2 macrophage

gene signature is significantly greater in NF1-deficient cases

(Figure S4B, Wilcoxon rank test p value = 5 3 10�3 and 0.084).

To further establish the association of NF1 deficiency with infil-

tration of tumor-associated macrophages/microglia, we per-

formed immunofluorescence staining of AIF1 and NF1 on six

TCGA IDH-WT GBMs. We observed an inverse correlation
48 Cancer Cell 32, 42–56, July 10, 2017
between NF1 and AIF1 staining (Wilcoxon rank test p values

<0.05, Figures 4A and 4B). We quantified this effect by

measuring the distance between NF1-deficient tumor cells and

macrophages/microglia through an immunohistochemistry-

based automated quantitative pathology imaging system. We

found that AIF1+ cells were in significantly closer proximity to

NF1– cells than NF1+ cells across 30 human GBMs (Wilcoxon

rank test p values < 13 10�3, Figures 4C and 4D). Consequently,

the number of AIF1+ cells significantly decreased with increasing

NF1 expression (Wilcoxon rank test p values <0.01, Figure 4E).

These results suggest that NF1 deactivation may promote mac-

rophages/microglia recruitment in tumors. We evaluated the ef-

fect of NF1 deactivation on macrophages/microglia recruitment

in vitro. We knocked down NF1 using two different hairpins in

TS603 human NF1 wild-type glioma cells (Figures 4F and 4G)

(Rohle et al., 2013), andmeasured the recruitment of both human

cultured microglial cells and freshly isolated GBM-associated

macrophages using a transwell assay (Figures 4H–4K). NF1

knockdown resulted in a 47% and 56% increase in recruitment

of freshly isolated GBM-associated macrophage cells for short

hairpin RNA (shRNA) # 5 and 8, respectively (Figure 4K, paired

Student’s t test p values <0.05). Consistent with this, recruitment

of human microglia cells increased by 44% and 21% following

NF1 knockdown by shRNA # 5 and 8, respectively (Figure 4J,

paired Student’s t test p values <0.05). These data substantiate

the hypothesis that NF1 deactivation in glioma cells results in

macrophages/microglia attraction.

Taken together, our in silico analyses and biological valida-

tions demonstrate that genomic alteration-induced NF1 defi-

ciency of tumor cells drives macrophages/microglia infiltration

into the tumor-associated microenvironment.

Phenotypic Plasticity upon GBM Recurrence
GBM has long been hypothesized to progress along a PN-to-

MES axis (Phillips et al., 2006). To determine the relevance of

this transition process in IDH-WT glioma evolution, we per-

formed a longitudinal analysis of the subtype classification and

tumor-associated microenvironment in sample pairs obtained

at diagnosis and first disease recurrence from 124 glioma pa-

tients. The cohort included 96 initial GBM and first recurrence

pairs, eight pairs of primary low grade glioma and matching sec-

ondary GBM, and 20 pairs of primary and recurrent low grade gli-

oma. Gene expression profiles of 78 tumor pairs were generated

using transcriptome sequencing, and profiles of the remaining

pairs were generated using Affymetrix (n = 31) and Illumina

(n = 15) microarrays. To facilitate exploration of this dataset,

we have made it available through a webportal (http://recur.

bioinfo.cnio.es/) associated with GlioVis (Bowman et al., 2017).

We used a gene expression signature (Baysan et al., 2012) to

determine that 33 of 124 cases were IDHmut or hypermethylated

(known as the GCIMP phenotype) at presentation and recur-

rence (Table S6). We used the renewed gene signatures and

classification method to determine the molecular subtype of

the 91 pairs of IDH-WT cases and found that expression class

remained consistent after disease recurrence for 50 of 91 IDH-

WT cases (55%) (Figure 5A). The MES subtype was most stable

(65%) while the CL (51%) and PN (41%) subtypes were less

frequently retained. Ten, 13, and 18 post-treatment tumors

switched subtypes to become CL, MES, and PN at disease

http://recur.bioinfo.cnio.es/
http://recur.bioinfo.cnio.es/
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Figure 4. Decreased NF1 Expression Enhances the Recruitment of Macrophages/Microglia in GBM

(A) Quantification of NF1 and AIF1 staining by immunofluorescence (IF) in six GBMs from TCGA (IDH-WT). At least three regions from each tumor were analyzed

(n = 30 regions).

(B) Representative IF images show NF1 and AIF1 staining TCGA IDH-WT GBMs.

(C) Representative images with IHC double staining and cell segmentation obtained fromCaliper InForm analysis software show the close proximity of AIF1+ cells

(red) and NF1– cells (blue) compared with NF1+ cells (green) in tumor sections from two GBM patients.

(D) Boxplot of distances from AIF1+ cells to the nearest NF1– and NF1+ cells, respectively (4022 AIF1+ cells from 30 GBMs).

(E) The appearance of AIF1+ cells within tumor sections with the various level of NF1 expression from 30 GBMs.

(F) qRT-PCR for NF1 mRNA levels in patient-derived GSCs (TS603) by the indicated short hairpins (shNT, non-targeting short hairpin as control). Error bars

represent SD of mean, n = 3.

(G) Immunoblot analysis of NF1 protein level in TS603 with short hairpins knocking down.

(H and I) Representative IF images show the recruited human microglia (H) or GBM patient-derived macrophages (I) by TS603 with NF1 knocking down in the

transwell assay. Cartoon depicting the experimental approach.

(legend continued on next page)
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recurrence, respectively, indicating that PN and MES increased

in frequency after recurrence while the CL subtype was least

frequently found (Figure 5A). The CL expression subtype was

previously found to be most sensitive to intensive therapy,

suggesting that therapy provides a competitive advantage for

non-CL cells (Verhaak et al., 2010), which may be tied into the

reduced EGFR expression frequency at recurrence (van den

Bent et al., 2015), whichmay explain the reduced post-treatment

incidence of the CL subtype. Despite a numerical increase in the

frequency of the MES subtype from primary disease (n = 37) to

recurrent tumor (n = 42), the difference was not significant (Pro-

portion test p value = 0.27).

We observed a significant difference in transcriptional

simplicity between primary GBM retaining their expression sub-

type and those that switched to a different phenotype (Figure 5B).

GBMswith a primary tumor simplicity score greater than average

(0.46), indicating lower transcriptional heterogeneity, were clas-

sified as the same subtype in 30 of 45 (67%) cases, compared

with 20 of 46 (43%) cases with primary tumor simplicity scores

below average (Fisher’s exact test p value = 0.02) that switched

subtype.

For comparison, we also performed the M1-M6 DNA methyl-

ation-based classification on 27 pairs of primary/recurrent gli-

omas (Table S6). DNAmethylation subtype switched upon tumor

progression in 4 of 27 cases. Of the four cases that switched

DNA methylation class, one has been described as an example

of extreme divergent evolution (Kim et al., 2015), with overlap in

mutations between primary and recurrent tumor sample of less

than 10%. The other three cases with switchedmethylation clas-

ses showed substantial differences in DNA copy number profiles

between primary and recurrent tumors (Figure S5A), similarly

suggesting significant genomic divergence. These results sug-

gest that DNA methylome-based classification has higher con-

sistency between different time points compared with transcrip-

tome subtypes (15% of 27 pairs per methylome subtype versus

55% of 91 pairs per transcriptome subtype, Fisher’s exact test

p value = 1.7 3 10�4).

Microenvironment Transitions upon GBM Recurrence
Debulking surgery, radiotherapy, and chemotherapy provide

therapeutic benefit but induce tumor evolution by providing a

competitive advantage to therapy-resistant glioma cells. The tu-

mor microenvironment plays an important role in providing nutri-

ents and may influence the evolutionary process. We explored

this possibility by comparing the tumor-associated microenvi-

ronment in primary and recurrent GBMs using CIBERSORT

(Table S6) (Newman et al., 2015). A comparison between 91 pri-

mary and recurrent IDH-WT tumors revealed a decrease in

monocyte gene signature expression at recurrence, suggesting

relative depletion of circulation-derived monocytes (Figure 5C).

Next, we dissected microenvironment fluctuations between

diagnosis and recurrent tumors across different subtype combi-

nations. Primary non-MES (CL or PN) tumors showed relatively
(J and K) Quantification of recruited humanmicroglia (J) or GBM patient-derived m

bars represent SD of means from three independent experiments (J) or three bio

Student’s t test/Wilcoxon rank test *p < 0.05, **p < 0.01, and ***p < 0.001. Boxplo

values and points within the boxes indicating the mean values. Whiskers extend to

also Figure S4.
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high tumor purity and, consequently, recurrentMES tumors clas-

sified as non-MES demonstrated a relatively global decrease of

immune cells while non-MES cases transitioning to MES at

recurrence represented increased immune cell fractions (Fig-

ure 5D). In contrast to the trend of monocyte depletion, the

imputed M2 macrophage frequency was significantly higher at

recurrence in cases transitioning to MES (Figure 5E). This obser-

vation converges with the higher predicted fraction of M2 mac-

rophages in primary MES GBM relative to primary non-MES

GBM.We validated the increase in macrophages using immuno-

staining of AIF1 expression in two primary-recurrent GBM pairs

which were classified as CL to MES (Figure 5F). AIF1 immunoex-

pression was restricted to macrophages/microglia, cells exhibit-

ing either ameboid or ramifiedmorphology, with no expression in

glioma tumor cells (Figures 5F and S3). Quantitative analysis of

microglia frequency using InForm software for automated pa-

thology imaging processing confirmed a significantly higher

presence (p value = 2.253 10�11 and 2.123 10�13 for patients 1

and 2, respectively) of AIF1+ cells at MES recurrence (Figures 5G

and S3). These findings further solidify the association between

MES GBM and macrophage/microglia and extend this mutual

relationship to disease recurrence. Compared to primary MES

tumors, MES tumors at recurrence showed an increase in tran-

scriptional activity associated with non-polarized M0 macro-

phages, which has been previously described (Gabrusiewicz

et al., 2016), but also dendritic cells. In contrast, primary PN

GBM were found to contain significantly higher fractions of five

immune cell categories compared with recurrent PN GBM, indi-

cating a relative absence of immune infiltration in PN GBM upon

recurrence.

We evaluated the effect of transcriptional subtype on patient

survival. The analysis was restricted to 54 cases for whom anno-

tation on overall survival time and time to disease progression

(PFS) were available and with high simplicity scores, indicating

low transcriptional heterogeneity. Patients whose primary tumor

was classified as MES trended toward adverse overall survival

(log rank test p = 0.09 with HR = 1.68) (Figure 6A). This pattern

was retained in patients whose recurrent glioma was classified

as MES, again trending toward significance (log rank test

p = 0.11 with HR = 1.60) (Figure 6B). Consequently, cases for

whom both primary and recurrent tumor were classified as

MES subtype showed the least favorable outcome, suggesting

an additive effect of transcriptional subtype at different time

points (Figures 6C and S5B–S5D).

Treatment-Induced Immunological Microenvironment
Changes upon GBM Recurrence
Temozolomide (TMZ) treatment of gliomas can induce hypermu-

tation (Hunter et al., 2006; Kim et al., 2015). Missense mutations

may generate neoantigens that can be recognized by CD8+

T cells (Schumacher and Schreiber, 2015). Exome mutation

data were accessible for 45 pairs in our cohort and among these

were six hypermutated recurrent GBM (HMR; R400 single
acrophages (K) by TS603 withNF1 knocking down in the transwell assay. Error

logical replications (K).

ts represent the 25th and 75th percentiles, with midlines indicating the median

the lowest/highest values of the data sample excluding outliers (A and D). See
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Figure 5. Microenvironment Transition between 91 Primary and Paired Recurrent IDH-WT GBM

(A) Rows and columns of the cross table represent the subtype distribution frequency of primary and paired recurrent tumors, respectively.

(B) Violin plots show the distribution of simplicity scores of pairs without (left) and with (right) subtype transition.

(C) Red and blue boxplots represent the immune cell fraction distribution of each immune cell type. Immune cell fraction was calculated using CIBERSORT and

adjusted using ESTIMATE purity scores. The difference between cell fraction of primary and paired recurrent tumors was calculated using Wilcoxon rank test.

(D) The blue-to-red heatmap represents immune cell fraction changes upon tumor recurrence per subtype transitions, which are listed on the left of the heatmap.

Fisher’s exact test was used to evaluate the distribution difference between patients with higher/lower immune cell fractions at tumor recurrence per subtype

transition. N.MES indicates non-MES cases.

(E) Each dot represents a pair of primary and recurrent GBM with axes indicating M2 macrophage cell fraction.

(F) Representative images of AIF1 IHC staining and corresponding score map obtained by InForm image analysis in two matched pairs of primary and recurrent

GBM. Scale bar, 25 mm.

(G) Unbiased quantification of AIF1+ percentage in primary and recurrent GBMs; statistical testing was performed using the Wilcoxon rank-sum test. Boxplots

represent the 25th and 75th percentiles, with midlines indicating the median values and points within the boxes indicating the mean values. Whiskers extend to

the lowest/highest values of the data sample excluding outliers (B, C, and G). See also Figure S5 and Table S6.
nucleotide variants). The mutation spectrum of the six HMRs

were characteristic of a typical TMZ-induced mutational signa-

ture (Figure S6) (Alexandrov et al., 2013). For the five pairs of
HMR with transcriptomes available, the predicted frequency

of CD8+ T cells was significantly increased at recurrence

in comparison with their primary tumors (Wilcoxon rank test
Cancer Cell 32, 42–56, July 10, 2017 51
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Figure 6. Survival Analysis of Paired IDH-

WT GBM

(A) Overall survival (OS) and PFS analyses be-

tween samples with different primary subtype.

(B) Difference of survival time after secondary

surgery between patients with non-MES and MES

in primary tumors (left) and in recurrent tumors

(right).

(C) OS and PFS analyses between samples with

difference recurrent subtype. See also Figure S5.
p value = 8 3 10�3) (Figure 7A). This observation was corrobo-

rated by comparing seven hypermutated primary GBMs with

238 non-hypermutated GBMs (Wilcoxon rank test p value =

0.031) (Figure 7B). The observation suggests that patients with

hypermutated tumors may have a more immunological reactive

microenvironment that may be responsive to immune check-

point inhibitors (Sharma and Allison, 2015).

Preclinical studies suggested that radiation may increase the

recruitment of T cells in the tumor microenvironment (Deng

et al., 2014; Zeng et al., 2013). As such, we compared the micro-

environment of primary GBM treated with radiation therapy and

separated short-term relapses (PFS <6 months, n = 27) from late

relapses (PFS >12 months, n = 21) (Table S7). We observed no

significant differences between primary tumors with short- and

long-term relapse. When comparing relapse GBMs, we found

that short-term relapse GBMs showed a significantly higher pre-

dicted presence of M2 macrophages and CD4+ T cells (CD4+ T

memory resting and CD4+ follicular helper cells) after radiation,

compared with long-term relapse tumors (Figure 7C). M2macro-

phages have been speculated to play a role in resistance to

radiotherapy (Meng et al., 2010; Ruffell and Coussens, 2015),

and macrophage targeting immunotherapy (Pyonteck et al.,

2013; Ries et al., 2014) may play a radiosensitizing role. The in-

crease of CD4+ T cells at recurrence of short-term relapse tu-
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mors points toward inhibiting CTLA-4 as

adjuvant therapy to radiation.

DISCUSSION

Transcriptome profiling of tumor samples

is a commonly used modality for interro-

gating pathway functionality and pheno-

type-based patient classification. The

transcriptional footprint left by the tumor

microenvironment, which may constitute

10%–80% of cells in a tumor biopsy

(Yoshihara et al., 2013), can obscure the

true activity of the signaling network

(Isella et al., 2015; Kim and Verhaak,

2015). Here, we employed in silico

methods to integrate mRNA expression

profiles from glioma samples and glioma

cell culture models to provide insights

into glioma-intrinsic pathway activities

and classification, and to deconvolute

the glioma-associated stroma into its

immunological cellular components.
GBM expression subtype classification has emerged as an

important concept to better understand the biology of this devas-

tating disease (Dunn et al., 2012; Huse et al., 2011; Sturm et al.,

2014). Robust classification of newGBM tumors is therefore crit-

ical to ensure consistency in reporting between different studies.

Our updatedmethods, released through an R-library, were found

to be highly robust and provide a standardized strategy for clas-

sification of gliomas. The transcriptional glioma subtypes defined

through clustering based on tumor-intrinsic genes strongly over-

lapped with the PN, CL, andMES subtypes, but identified the NE

subtype as normal NE lineage contamination. We observed that

theMESGBM subtype continued to associate with the presence

of tumor-associated glial and microglia cells. Mesenchymal gli-

oma cell differentiation status has been found to correlate with

enrichment of macrophages/microglia (Bhat et al., 2013; Kreutz-

berg, 1996). Our results confirm that a macrophage/microglia-

rich microenvironment can shape a MES glioma cell phenotype.

However, we also found that genetic deactivation ofNF1 associ-

ated with attracting macrophages/microglia, suggested that a

two-way interaction exists between tumor cells and microenvi-

ronment. Further studies are needed to identify the mechanism

of NF1-regulated chemotaxis, which may result in the develop-

ment of agents that are able to repress the recruitment of macro-

phages/microglia as a therapeutic modality.
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Figure 7. Immune Cell Frequency Comparison

(A) Blue and red diamonds indicate individual primary and recurrent tumors.

The dashed lines connect paired primary and recurrent tumors.

(B) Blue and red circles indicate non-hypermutated and hypermutated primary

samples.

(C) Sky blue/dark blue and orange/red boxplots indicate short- and long-term

relapsed tumors, respectively. The y axis stands for immune cell fraction.

Wilcoxon rank-sum tests were used to examine the significance of the dif-

ferences between groups, and p values are shown at the top of each panel.

Boxplots represent the 25th and 75th percentiles, with midlines indicating the

median values and points within the boxes indicating the mean values.

Whiskers extend to the lowest/highest values of the data sample excluding

outliers (A–C). See also Figure S6 and Table S7.
Longitudinal analysis of tumor samples is complicated by the

lack of tissue collections including such pairs. Through aggrega-

tion of several datasets, we compiled a cohort of 124 glioma

pairs, including 91 pairs of IDH-WT tumors. Comparison of pairs

of initial gliomas and first disease recurrence did not identify the

trend of PNGBM transitioning to aMESphenotype that has often

been suspected (Phillips et al., 2006). Mesenchymal subtype at

diagnosis and at disease recurrence correlated with relatively

poor outcome. The immune microenvironment of recurrent

IDH-WT GBM showed a reduction in blood-derived monocytes,

whichmay reflect lower penetration through the blood-brain bar-

rier as a result of radiotherapy (van Vulpen et al., 2002). While the

frequency of M2 macrophage/microglia was increased in recur-
rent MES GBM compared with primary non-MES GBM, the

overall fraction of M2 macrophage/microglia remained stable.

This possibly suggests that themajority of these cells are derived

from resident CNS macrophages rather than through active

recruitment from the circulation. Our analysis resulted in two in-

sights with potentially important therapeutic implications. We

showed an association between the presence of M2 macro-

phages and poor response to ionizing radiotherapy.While further

optimization of macrophage-inhibiting agents is required before

they become clinically useful (Quail et al., 2016), our results may

provide an imperative for combination of radiotherapy and M2

macrophage-inhibiting agents (Pyonteck et al., 2013; Xu et al.,

2014). Second, we identified a correlation between hypermuta-

tion and increased frequency of CD8+ lymphocytes, both at pri-

mary diagnosis and at disease recurrence, albeit with different

mutational signatures. This subset of patientsmay be responsive

to checkpoint inhibition blockade, to which limited successes

have been reported (Bouffet et al., 2016; Johanns et al., 2016).

In summary, our study defines a strategy to determine tran-

scriptional subtype and associates expression subtypes to the

tumor-associated immuno-environment. Our findings may aid

in the implementation of immunotherapy approaches (Blank

et al., 2016) in a disease type with very limited treatment options.

Collectively, our results improve our understanding of determi-

nants of GBM subtype classification, elucidate the critical impact

of the tumor microenvironment, and provide handles on the

interpretation of transcriptional profiling of glioma.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal Anti-AIF1 Abcam Cat# ab178846; RRID: AB_2636859

Mouse monoclonal anti-GFAP (GA5) Cell Signaling Technology Cat# 3670; RRID: AB_10831828

Mouse monoclonal Anti-beta-Tubulin Cell Signaling Technology Cat# 2128; RRID: AB_823664

Mouse monoclonal Anti-Vinculin EMD Millipore Cat# 05-386; RRID: AB_309711

Mouse monoclonal anti-NF1 (McNFn27b) GeneTex Cat# GTX15776

Rabbit polyclonal anti-ITGAM Sigma-Aldrich Cat# HPA002274; RRID: AB_1078435

Mouse monoclonal Anti-Bovine alpha-Actinin Sigma-Aldrich Cat# A5044; RRID: AB_476737

Rabbit polyclonal Anti-Iba-1 Wako Cat# 016-20001; RRID: AB_839506

Chemicals, Peptides, and Recombinant Proteins

EGF Sigma-Aldrich Cat# E9644

bFGF Sigma-Aldrich Cat# F0291

Calcein AM BD Biosciences Cat# 564061

Critical Commercial Assays

RNA Truseq library prep kit Illumina Cat# 15042173

MasterPure� Complete DNA and RNA Purification Kit Epicenter Cat# MC85200

BD FluoroBlok� System BD Biosciences Cat# BD351161

MACH 2 Double Stain 2 Biocare Medical Cat# MRCT525G

SMARTer� PCR cDNA Synthesis Kit Clontech Cat# 634926

Nextera XT DNA Sample Prep Kit Illumina Cat# FC-131-1096

Deposited Data

RNA sequencing data European Genome-phenome

Archive (EGA)

EGAS00001001033

RNA sequencing data European Genome-phenome

Archive (EGA)

EGAS00001002429

Software and Algorithms

InForm software

Pannoramic Viewer

Integrative Genomics Viewer (IGV, Version2.3)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact: Roel G.W. Verhaak (roel.

verhaak@jax.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Cell Culture
Patient-derived glioma stem cells (GSCs, TS603) were described previously (Hu et al., 2016). The GSCs were cultured in NSC pro-

liferation media (Millipore Corporation, Billerica, MA) with 20 ng/ml EGF and 20 ng/ml bFGF. Human microglia cells were purchased

from ScienCell and were cultured in microglia completed media as recommended by vendor. GBM patient-derived macrophages

were isolated by CD14 microbeads using immunomagnetic method as described previously (Gabrusiewicz et al., 2016).

The pLKO.1 shRNAs for targeting NF1 were purchased from Sigma. Lentiviruses were produced in 293T cells (ATCC) with pack-

aging system (pCMVR8.74, pMD2.G, Addgene) as per Vendor’s instruction.

R package (Version 3.2.5)
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Human GBM Biospecimens for RNA Sequencing
The GBM tumor tissues were collected and named in the order that they were acquired. The primary tumors matched sphere cell

lines were isolated from fresh tissues. Each tissue was enzymatically and mechanically dissociated into single cells and grown in

DMEM/F12 media supplemented with B27 (Invitrogen), EGF (20 ng/ml), and bFGF (20 ng/ml), resulting in neurosphere growth. All

cell lineswere tested to exclude the presence ofMycoplasma infection. Human tissue collectionwas performedwith written informed

consent from patients, using a protocol approved by the institutional review board (IRB) of The University of Texas M.D. Anderson

Cancer Center (LAB04-0001, PA16-0408).

Tissues from nine pairs of initial and matched recurrent GBMs were obtained from Henry Ford Hospital in accordance with insti-

tutional policies and all patients provided written consent, with approval from the Institutional Review Boards (Henry Ford Hospital

IRB protocol #402).

The frozen tissue from 44 patients with initial and recurrent GBM that received resection at Samsung Medical Center and Seoul

National University Hospital were provided by Dr. Nam’s lab. Surgery specimens were obtained in accordance to the Institutional

Review Board (IRB) of the Samsung Medical Center (No. 2010-04-004) and Seoul National University Hospital (No. C-1404-056-

572), with written informed consent from all patients.

METHOD DETAILS

Generation of the Primary and Recurrent Glioma RNA-Seq Datasets
U133A array profiles for 533 primary GBM, and RNA-Seq data for 166 primary and 13 recurrent GBM were obtained from the TCGA

portal https://tcga-data.nci.nih.gov/tcga/. Mutation calls and DNA copy number profiles were obtained for all samples, where avail-

able. All non-TCGA data used in this study is publicly available as raw data. Processed primary/recurrence expression data can be

analyzed through GlioVis portal http://recur.bioinfo.cnio.es/.

Regarding the pairs of primary and recurrent gliomas from fromHenry Ford Hospital (n = 12), all RNA samples testedwere obtained

from frozen specimens. All of the recurrent GBMs had been previously treated with chemotherapy and radiation. Three cases had a

history of lower grade astrocytoma prior to the first GBM (HF-2869/HF-3081/HF-3162). Tumors were selected solely on the basis of

availability. RNA-Seq libraries were generated using RNA Truseq reagents (Illumina, San Diego, CA, USA) and paired-end sequenced

using standard Illumina protocols. Read length was 76 base pairs for cases sequenced by TCGA and from Henry Ford (processed at

MD Anderson).

RNA-Seq data on frozen tissue from 44 patients with initial and recurrent GBM from Samsung Medical Center and Seoul National

University Hospital were provided by Dr. Nam’s lab. Affymetrix CEL files of 39 pairs of initial and recurrent glioma were retrieved from

the Gene Expression Omnibus (GEO accession GSE4271, GSE42670, GSE62153)(Joo et al., 2013; Kwon et al., 2015; Phillips et al.,

2006). The expression profiles of the 23 pairs fromGSE4271 were determined using Affymetrix HG-U133GeneChips, the 1 pairs from

GSE42670 were analyzed using the Affmetrix HuGene-1-0-st platform, the 15 pairs from GSE62153 were analyzed using Illumina

Human HT-12 V4.0 expression BeadChip. The RNA sequencing data of 14 and 5 pairs of primary and recurrent low grade glioma

were from TCGA LGG cohort and available through the European Genome-phenome Archive (EGA; http://www.ebi.ac.uk/ega/),

EGAS00001001255, (Mazor et al., 2015), respectively. The RNA sequencing data of 9 pairs of primary and recurrent glioblastoma

have been submitted to EGA under accession number EGAS00001001033. Genome wide DNA copy number profiling and exome

sequencing on thirteen TCGA tumor pairs and nine of ten Henry Ford tumor pairs were performed and data was analyzed using stan-

dard protocols and pipelines as previously described (Kim et al., 2015).

Evaluating Datasets Integrating Stability of the Classification System
To evaluate the cross platform classification stability, we collected RNA sequencing data of 162 primary GBMs (Brennan et al., 2013)

for which an Affymetrix HT-U133A gene expression profile was also available from the TCGA dataset. We observed a low Pearson

Correlation Coefficient (< 0.15) between RNA sequencing based reads per kilobase of transcript per million reads (RPKM) and Affy-

metrix HT-U133A profiles in eighteen cases and these were removed from further analysis. This results in 144 pairs of transcriptomes

to assess the concordance between classification results of the newly developed 50-gene signatures based classification system

between RNAseq and microarray based profiling platform. As shown in Figure S1H, a total of 134 (93%) cases received the same

subtype across different platforms.

There are several commonly used metrics for quantifying the expression on RNA-seq platform, such as reads per kilobase per

million mapped reads (RPKM), k-mers per kilobase per million mapped k-mers (KPKM) and transcripts per million (TPM)(Patro

et al., 2014). To evaluate the subtyping concordance when using different expression quantification metrics, we collected a set of

46 samples with transcriptome profiled and quantified outside of our lab with three metrics RPKM, KPKM and TPM. As shown in Fig-

ure S1I, our classification system achieved a 100% consistence while using different quantification metrics.

For some of the GBMdatasets, not every IDH status was determined when using the classification system.We evaluated the inter-

ference of embedded non-IDH-WT samples in a GBM cohort. A set of 369 cases in the TCGA GBM cohort are IDH-WT and GCIMP-,

42 and 122 cases are IDHmut/GCIMP+ and status unknown, respectively.We performed the classification systemon the 369 IDH-WT

cases and entire 533GBMs separately. Thenwe compared the classification results of the 369 IDH-WT cases in two different runs. As

shown in Figure S1J, 97% IDH-WT GBMs received the same subtyping results.
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Integrating datasets from various sources may be impacted by batch effects. We have 111 and 179 RNA sequenced profiles of

GBMs collected independently from TCGA dataset and SamsungMedical Center. We combined the 290 samples from the two data-

sets together and performed the classification. While comparing the subtyping results with the subtypes identified in separate data-

set, as shown in Figure S1K, 13 cases showed different subtypes, resulting in a 93% concordance.

As the classification system using resampling method to build a background distribution for determining the empirical p values

for classification, the sample size of inputted dataset for performing the classification has an impact on the subtyping results. To

evaluate this effect, we randomly selected samples from the 533 TCGA GBMs profiled using microarray or the 111 in house

(SMC samples) RNA sequenced GBMs and performed the classification system independently, and we repeated the random

selection procedures 50 times. Then we compared the subtyping results within the randomly generated sample sets with the

classification results received using the entire 533 TCGA or 111 SMC GBMs. As shown in Figure S1L (left), the newly developed

classification achieved a 90% concordance between sample sets with size >= 20 and the entire 533 TCGA or 111 SMC GBMs.

Upon removing non-simplex samples from the original sample sets, the classification performance per sample size improves

(Figure S1L, right).

Transcriptome Data Processing
The latest version of custom CDF files (Version19, http://brainarray.mbni.med.umich.edu) (Dai et al., 2005; Sandberg and Larsson,

2007) were used to map probes from the Affymetrix HG-U133A and HuGene-1_0-st GeneChip platforms to the Ensemble transcript

database, combined in one probe set per gene, and normalized using the AROMA packagewith default parameters, resulting in RMA

normalized and log transformed gene expression values (Bengtsson et al., 2009). All RNA sequencing data was processed by the

PRADA pipeline (Torres-Garcia et al., 2014). Briefly, reads were aligned using BWA against the genome and transcriptome. After

initial mapping, the aligned reads were filtered out if their best placements are only mapped to unique genomic coordinates. Quality

scores are recalibrated using the Genome Analysis Toolkit (GATK), and duplicate reads are flagged using Picard. Mapped features

were quantified and normalized per kilo base of transcript per million reads (RPKM) and were converted to a log2 scale to represent a

gene expression level. RPKM values measuring the same gene that mapped to the Ensemble transcript with longest size were

selected to obtain one expression value per gene and sample. RPKM values were converted to a log2 scale to represent gene

expression level. The statistical environment R was used to perform all the statistical analysis and graph plots.

Deriving GBM Intrinsic Subtype Signatures
We performed consensus non-negative matrix factorization (CNMF) clustering method to identify distinct subtypes among the 369

IDH-WT primary GBMs based on the 7,425 BFGs we established using single glioma cells, GBM-neurosphere pairs and comparison

of core vs leading edge tumors. Genes were ranked according to their maximum absolute deviation (MAD) values from high to low in

the 369 by 7425 expression matrix. When the 369 IDH-WT GBMs were clustered into three subtypes, we received the highest

average clustering cophenetic scores (Table S1), resulting the identification of three distinct subtypes among the 369 IDH-WT

GBMs. A set of 256 GBMs was recognized as core samples based on a positive silhouette width resulting 94, 70 and 92 cases

were clustered as subtype1, subtype2 and subtype3, respectively, which were later names as MES, PN and CL subtype. Signature

genes per cluster were selected on the basis of differences in gene expression level and were considered significant if they reached

the cut-off value with t-test p value < 1e-3 for higher expressed in this subtype, while also showing a significant lower expression with

t-test p value < 1e-3 in the other two subtypes. 64, 50 and 330 genes were identified as candidate signature genes for MES, PN and

CL, respectively. In the original gene signatures, genes could be either down-regulated or up-regulated, while only up-regulated

genes (n = 50 per gene signature) were selected for revised gene signatures by keeping the same size of signature genes for

each subtype as well.

Molecular Classifications Based on ssGSEA Enrichment Scores
Single sample gene set enrichment analysis was performed as follows. For a given GBM sample, gene expression values were rank-

normalized and rank-ordered. The Empirical Cumulative Distribution Functions (ECDF) of the signature genes and the remaining

genes were calculated. A statistic was calculated by integration of the difference between the ECDFs, which is similar to the one

used in GSEA but is based on absolute expression rather than differential expression (Barbie et al., 2009). Since the ssGSEA test

is based on the ranking of genes by expression level, the uncentered and log-transformed U133A and RPKM expression levels

were used as input for ssGSEA. Since the scores of the three signatures were not directly comparable, we performed a resampling

procedure to generate null distributions for each of the four subtypes. First we generated a large number of virtual samples in which

each gene obtains its expression level by randomly selecting an expression value of the same gene in the remainder of the samples.

Then, the three ssGSEA scores for each signature were calculated. Following this procedure, we generated a large number

(>= 1,00,000) of random ssGSEA scores for each subtype, to build the null distribution and to give empirical p values for the raw

ssGSEA scores of each sample. By testing on multiple datasets with different sample sizes, we found the resampling generated

distribution could be replaced with Student-T distribution (sample size > 30) or Normal distribution (sample size > 50) for getting

very similar results. R-library with the code and expression matrices used is provided as Method S1.
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Evaluate the Simplicity of Subtype Activation
For a single sample, we decreased rank the empirical p values for each subtype to generate order statistics as RN�1;RN�2.R1;R0.

In particular, R0 equals to the minimum empirical p value and points to the dominant subtype, i.e., the most significantly activated

subtype. The accumulative distance to the dominant subtype (ADDS) was defined as:

ADDS=
XN�1

i = 1

ðRi � R0Þ

Similarly, the accumulative distance between non-dominant subtypes (ADNS) as:

ADNS=
X

j>i>0

ðRj � RiÞ

Obviously, the ADDS and ADNS are positive and negative correlated with single activation, respectively. Hence, we defined the

simplicity score by combing ADDS and ADNS together and corrected with a constant ðRN�1�R0Þ
N�1 as follows:

Simplicity score= ½ADDS� ADNS�3 ðRN�1 � R0Þ
N� 1

Establishment of Datasets of Primary Tumors and Matched Sphere Cell Lines
To minimize any batch effect the downstream molecular analyses were performed on identical cell culture batches. Total RNA from

formalin fixed, paraffin embedded tumor tissues andmatching neurospheres was prepared using theMasterpure complete DNA and

RNA isolation kit (Epicenter) after proteinase K digestion per to the instructions from the manufacturer. Paired-end Illumina HiSeq

sequencing assays were performed resulting in a medium number of 50 million 75bp paired end reads per sample. We employed

the PRADA pipeline to process the RNA sequencing data (Torres-Garcia et al., 2014). In short, Burroughs-Wheeler alignment, Sam-

tools, and Genome Analysis Toolkit were used to map short reads to the human genome (hg19) and transcriptome (Ensembl 64) and

RPKM gene expression values were generated for each of the 135,994 transcripts of 21,165 protein coding genes in Ensembl

database.

RNA Isolation and qRT-PCR
GSCs (TS603) were infected by lentivirus carrying short hairpins to target NF1 gene. The pLKO.1 shRNAs were purchased from

Sigma. The cells were harvested after 48 post-infection and RNA was isolated with RNeasy� Mini Kit (Qiagen), and then used for

first-strand cDNA synthesis using random primers and SuperScriptIII Reverse Transcriptase (Invitrogen). qRT–PCR was performed

using Power SYBR Green PCR Master Mix (Applied Biosystems). The sequences of NF1 primers are: forward- CAGAGAGCCTT

GAGGAAAACC, reverse- CTGGCTAACCACCTGGTATAAAC. The relative expression of genes was normalized using ribosomal pro-

tein L39 (forward- CAGCTTCCCTCCTCTTCCTT, reverse- GCCAGGAATCGCTTAATCC) as a housekeeping gene.

Immunoblotting (IB), Immunohistochemistry (IHC) and Immunofluorescence (IF)
For immunoblotting, cells were harvested, washed with phosphate buffered saline, lysed in RIPA buffer (150 mM NaCl, 50 mM Tris

[pH 8.0], 1.0% Igepal CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate [SDS]; Sigma); and frozen tumor sections

were lysed using RPPA lysis buffer (1% Triton X-100 50mM HEPES pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF,

10mM Na pyrophosphate, 1mM Na3VO4, 10% glycerol). Both types of lysate buffer contain with protease inhibitor cocktail tablet

complete mini (Roche Diagnostics), phosphatase inhibitor cocktail 2 (Sigma) and 1 mM DTT, and centrifuged at 10,000 3 g at 4�C
for 15min. Protein concentrationwasmeasured using the BCA kit (ThermoScientific - Pierce #23225). Protein lysateswere subjected

to SDS-polyacrylamide gel electrophoresis on 4-12% gradient polyacrylamide gel (NuPage, Thermo Fischer Scientific), transferred

onto nitrocellulose membranes which were incubated with indicated primary antibodies, washed, and probed with HRP-conjugated

secondary antibodies. The primary antibodies include ITGAM (CD11B) (Sigma Aldrich, #HPA002274), AIF1 (IBA1) (Wako, #016-

20001), GFAP (Cell Signaling, #3670), NF1 (clone McNFn27b, GeneTex, #GTX15776), Actin (Sigma Aldrich, A5044), Vinculin (EMD

Millipore, # 05-386) and Tubulin (Cell Signaling, #2128).

For IHC staining, brain tumor sections were incubated with the primary antibodies for 1 hour at room temperature (RT) or overnight

at 4�C after deparaffinization, rehydration, antigen retrieval, quenching of endogenous peroxidase and blocking. The sections were

incubated with horseradish peroxidase (HRP)-conjugated polymer (DAKO) for 40 minutes and then Diaminobenzidine using Ultravi-

sion DAB Plus Substrate Detection System (Thermo Fischer Scientific) for 1-10 minutes at RT, followed by hematoxylin staining. For

IHC double staining, the tumor sections were incubated with MACH 2 Double Stain 2 (Biocare Medical) for 20-30min; and then the

sections were stained by Biocare’s Warp Red (Biocare Medical) and subsequently by DAB detection system (Thermo Fischer

Scientific) for 1-10 minutes at RT, followed by hematoxylin staining. The primary antibodies for IHC staining include AIF1 (Abcam,

ab178864) and NF1 (clone McNFn27b, GeneTex #GTX15776).

For IF staining, OCT frozen brain sections were thawed at RT for 30 minutes, rinsed and rehydrated with phosphate buffered saline

3 times. After blocking with PBS buffer containing 10% FBS, 1%BSA and 0.3% Triton, the sections were incubated with the primary
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antibodies (AIF1, ab178864; NF1, GTX15776) overnight at 4�C. The samples were then incubated with species-appropriate donkey

secondary antibodies coupled to AlexaFluor dyes (488, 594, Invitrogen) for 1 hour at RT. VECTASHIELD with DAPI (Vector Labora-

tories) was used to mount cover slips. The slides were analyzed using Leica DMi8 microsystems.

Transwell Assay
Transwell assays were performed in BD FluoroBlok 96-multiwell insert systems (8.0 mm pore sizes) as per manufacturer’s protocol

(BD biosciences). Human microglial cells or patient-derived microphages were seeded in transwell inserts at 13104 cells/well. After

4 hours starvation in DMEM/F-12 basal media (Thermo Fischer Scientific) at 37�C, 5% CO2 incubator, the inserts were transferred

into the basal chambers containing 5%FBS or GSC (TS603) withNF1 knocking down by shRNA in NSC growthmedia. After 24 hours

incubation, the inserts were transferred into a second 96-well plate containing 4 mg/mL Calcein AM (BD biosciences) in DPBS. Incu-

bate for 1 hour at 37�C, 5%CO2, fluorescence of invaded cells was read at wavelengths of 494/517 nm (Ex/Em) on fluorescent plate

reader.

Single-cell Isolation and RNA Sequencing Data Processing
We generated single cell RNA sequencing data as follows. From a single patient, we obtained two initial tumor samples from the right

and left frontal lobes and a recurrent tumor from the left frontal lobe that emerged after concurrent chemoradiotherapy (CCRT) and

EGFR-targeted treatment. After these three tumor tissues were dissociated, the C1� Single-Cell Auto Prep System (Fluidigm, San

Francisco, CA, USA) with the SMARTer kit (Clontech, Mountain View, CA, USA) was used to capture single cells and to isolate

cDNA from the cells. With the Nextera XT DNA Sample Prep Kit (Illumina) and HiSeq 2500, we sequenced the transcriptomes of 29,

60, and 44 single cells from left, right and relapse tumors, respectively. From the sequenced reads (100bp paired-end), 5’-end 30 nu-

cleotides were trimmed and mapped on human genome assembly (hg19). For all 133 single cells, RPKM values of 23660 genes were

obtained byDEGseq (R package) (Wang et al., 2010). To identify whether the in-house sequenced single cells were tumor cells, we first

performed a gene signature based filtering as follows. We compiled the transcriptomes of four tumor astrocytes, six fetal astrocytes,

twelve mature astrocytes, one neuron, five oligodendrocytes, three macrophages/microglia, and two endothelial cells from published

datasets(Zhang et al., 2016). Gene signatures of these human brain cell types were established by using CIBERSORT based on the

compiled transcriptomes, and glioma cell signature as well. Then we assigned seven fraction scores for each of the 133 single cells

using CIBERSORT based on the signature matrix of seven cell types. A single cell was assigned to the cell type with highest fraction

score, hence to determine a single cell to be tumor or non-tumor cell (Newman et al., 2015). As a result, 98 of 133 cells were classified

as tumor cells whereas the rest were identified as oligodendrocyte or microglia. Expression profiles of these 98 glioma cells were

used for further analysis. A set of 95 of the 98 single cells with more than 5,000 genes detected were retained in the consequent ana-

lyses. We also compiled 672 single cells from a published dataset (Patel et al., 2014). 502 of the 672 single cells expressed more than

5,000 genes.

For more conservative identification of non-tumor-like case(s) in the 597 single cells, we performed an expression based CNV

profiling analysiswhich is similar to themethodused in previouspublications (Patel et al., 2014).We identified3,262 significantly differ-

entially expressed genes (FDR<0.01) between TCGA tumors vs. normal cases. We then plotted the average expression per 60 gene

window along genomic coordinates to infer the CNV. We clustered the gene expression estimated CNV profile of the 502 or 95 single

cells togetherwith eight non-tumor cells (humanbrain tissue isolatedmicroglia,GSE80338)(Szulzewsky et al., 2016). For the502 single

cells, the unsupervised hierarchical clustering roughly identified eight major subgroups (group size>2), and all the non-tumor cells

were clustered together with only one single cell (Figure S1A, left). For the 95 single cells, the eight non-tumor cells and single cells

weclustered into two separate clusterswithoutmixture (Figure S1A, right). Notably, theCNVprofile of the single cell subgroups shows

a typical CNVpattern of gliomas such as amplification of chromosome 7/12 and deletion of chromosome 9/10.We removed the single

cell which was grouped together with non-tumor cells, and hence resulted a 596 single glioma cells population.

We analyzed the distribution of the gene express frequency in the 596 single glioma cells, and identified an abnormal low express

frequency peak at 5%, while the frequency of genes which expressed in more than 5% single cells are approximately followed a

uniform distribution. We reasoned that the genes expressed in less than 5% are highly suspected to be non-tumor cell intrinsically

expressed and hence yield the abnormal distribution peak. By discarding the 8,214 genes expressed in less than 5% single cells, the

retained 14,656 genes were considered as the candidate bona fide glioma genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

For quantification of protein staining andmeasurement of distance between AIF1+ cells to NF1+ and NF- cells in GBM tumor sections,

the IHC stained images were captured using Caliper Vectra Image System and analyzed data were generated using InForm software

as described previously(Hu et al., 2016). In short, thirty scan fields were selected across the entire tumor section. In one tumor slide,

the primary tumor of patient #2, nineteen scan fields were selected due to the small size of the tumor section. Percentages of the

median and high levels (2+, 3+) of AIF1 were used for the comparison. AIF1+ cells were first located and the nearest NF1+ and

NF1- cells within 40 pixels (�28 mm) of each respective AIF1+ cell was defined and calculated using R package. Statistical analysis

was performed by using Wilcoxon rank test.
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Comparisons of neurosphere formation and gene expression by qRT-PCRwere performed using the unpaired student’s t-test. For

all experiments with error bars, standard deviation was calculated to indicate the variation within each experiment and data, and

values represent mean ± SD. All other statistical analyses were performed using R package (Version 3.2.5), and the detailed infor-

mation about statistical methods were specified in figures/tables.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The accession numbers for the whole transcriptome sequencing data generated in this study are EGAS00001001033 and

EGAS00001002429.
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