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SUMMARY

Therapy development for adult diffuse glioma is hin-
dered by incomplete knowledge of somatic glioma
driving alterations and suboptimal disease classifi-
cation. We defined the complete set of genes associ-
ated with 1,122 diffuse grade II-III-IV gliomas from
The Cancer Genome Atlas and used molecular
profiles to improve disease classification, identify
molecular correlations, and provide insights into
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the progression from low- to high-grade disease.
Whole-genome sequencing data analysis deter-
mined that ATRX but not TERT promoter mutations
are associated with increased telomere length.
Recent advances in glioma classification based on
IDH mutation and 1p/19q co-deletion status were
recapitulated through analysis of DNA methylation
profiles, which identified clinically relevant molecular
subsets. A subtype of IDH mutant glioma was asso-
ciated with DNA demethylation and poor outcome;
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a group of IDH-wild-type diffuse glioma showed mo-
lecular similarity to pilocytic astrocytoma and rela-
tively favorable survival. Understanding of cohesive
disease groups may aid improved clinical outcomes.
INTRODUCTION

Diffuse gliomas represent 80% of malignant brain tumors

(Schwartzbaum et al., 2006). Adult diffuse gliomas are classi-

fied and graded according to histological criteria (oligoden-

droglioma, oligoastrocytoma, astrocytoma, and glioblastoma;

grade II to IV). Although histopathologic classification is well

established and is the basis of the World Health Organization

(WHO) classification of CNS tumors (Louis et al., 2007), it suf-

fers from high intra- and inter-observer variability, particularly

among grade II-III tumors (van den Bent, 2010). Recent molec-

ular characterization studies have benefited from the availabil-

ity of the datasets generated by The Cancer Genome Atlas

(TCGA) (Brennan et al., 2013; Eckel-Passow et al., 2015; Frat-

tini et al., 2013; Kim et al., 2015; Suzuki et al., 2015; Cancer

Genome Atlas Research Network et al., 2015) and have related

genetic, gene expression, and DNA methylation signatures

with prognosis (Noushmehr et al., 2010; Sturm et al., 2012;

Verhaak et al., 2010). For example, mutations in the isocitrate

dehydrogenase genes 1 and 2 (IDH1/IDH2) define a distinct

subset of glioblastoma (GBM) with a hypermethylation pheno-

type (G-CIMP) with favorable outcome (Noushmehr et al.,

2010; Yan et al., 2009). Conversely, the absence of IDH muta-

tions in LGG marks a distinct IDH-wild-type subgroup charac-

terized by poor, GBM-like prognosis (Eckel-Passow et al.,

2015; Cancer Genome Atlas Research Network et al., 2015).

Recent work by us and others has proposed classification of

glioma into IDH wild-type cases, IDH mutant group addi-

tionally carrying codeletion of chromosome arm 1p and 19q

(IDH mutant-codel) and samples with euploid 1p/19q (IDH

mutant-non-codel), regardless of grade and histology (Eckel-

Passow et al., 2015; Cancer Genome Atlas Research Network

et al., 2015). Mutation of the TERT promoter, which has been

reported with high frequency across glioma, may be an addi-

tional defining feature. Current analyses have not yet clarified

the relationships between LGGs and GBMs that share com-

mon genetic hallmarks like IDH mutation or TERT promoter

mutation status. An improved understanding of these relation-

ships will be necessary as we evolve toward an objective

genome-based clinical classification.

To address the above issues, we assembled a dataset

comprising all TCGA newly diagnosed diffuse glioma consisting

of 1,122 patients and comprehensively analyzed using seq-

uencing and array-based molecular profiling approaches. We

have addressed crucial technical challenges in analyzing this

comprehensive dataset, including the integration of multiple

platforms and data sources (e.g., multiple methylation and

gene expression platforms). We identified new diffuse glioma

subgroups with distinct molecular and clinical features and

shed light on the mechanisms driving progression of lower grade

glioma (LGG) (WHO grades II and III) into full-blown GBM (WHO

grade IV).
RESULTS

Patient Cohort Characteristics
The TCGA LGG and GBM cohorts consist of 516 and 606 pa-

tients, respectively. Independent analysis of the GBM dataset

was previously described, as was analysis of 290 LGG samples

(Brennan et al., 2013; Cancer Genome Atlas Research Network

et al., 2015). 226 LGG samples were added to our current cohort

(Table 1). Clinical data, including age, tumor grade, tumor histol-

ogy, and survival, were available for 93% (1,046/1,122) of cases

(Table S1). The majority of samples were grade IV tumors (n =

590, 56%), whereas 216 (21%) and 241 (23%) were grade II

and III tumors, respectively. Similarly, 590 (56%) samples were

classified as GBM, 174 (17%) as oligodendroglioma, 169

(16%) as astrocytoma, and 114 (11%) as oligoastrocytoma.

Among the data sources considered in our analysis were gene

expression (n = 1,045), DNA copy number (n = 1,084), DNA

methylation (n = 932), exome sequencing (n = 820), and protein

expression (n = 473). Multiple and overlapping characterization

assays were employed (Table S1). All data files that were used

in our analysis can be found at https://tcga-data.nci.nih.gov/

docs/publications/lgggbm_2015/.

Identification of Novel Glioma-Associated Genomic
Alterations
To establish the set of genomic alterations that drive gliomagen-

esis, we called point mutations and indels on the exomes of 513

LGG and 307 GBM using the Mutect, Indelocator, Varscan2,

and RADIA algorithms and considered all mutations identified

by at least two callers. Significantly mutated genes (SMGs)

were determined using MutSigCV. This led to the identification

of 75 SMGs, 10 of which had been previously reported in

GBM (Brennan et al., 2013), 12 of which had been reported in

LGG (Cancer Genome Atlas Research Network et al., 2015),

and 8 of which had been identified in both GBM and LGG

studies. 45 SMGs have not been previously associated with

glioma and ranged in mutation frequency from 0.5% to 2.6%

(Table S2A). We used GISTIC2 to analyze the DNA copy number

profiles of 1,084 samples, including 513 LGG and 571 GBM,

and identified 162 significantly altered DNA copy number seg-

ments (Table S2B). We employed PRADA and deFuse to detect

1,144 gene fusion events in the RNA-seq profiles available for

154 GBM and 513 LGG samples, of which 37 in-frame fusions

involved receptor tyrosine kinases (Table S2C). Collectively,

these analyses recovered all known glioma driving events,

including in IDH1 (n = 457), TP53 (n = 328), ATRX (n = 220),

EGFR (n = 314), PTEN (n = 168), CIC (n = 80), and FUBP1

(n = 45). Notable newly predicted glioma drivers relative to the

earlier TCGA analyses were genes associated with chromatin

organization such as SETD2 (n = 24), ARID2 (n = 20), DNMT3A

(n = 11), and the KRAS/NRAS oncogenes (n = 25 and n = 5,

respectively).

We overlapped copy number, mutation (n = 793), and fusion

transcript (n = 649) profiles and confirmed the convergence of

genetic drivers of glioma into pathways, including the Ras-Raf-

MEK-ERK, p53/apoptosis, PI3K/AKT/mTOR, chromatin modifi-

cation, and cell cycle pathways. The Ras-Raf-MEK-ERK sig-

naling cascade showed alterations in 106 of 119 members
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Table 1. Clinical Characteristics of the Sample Set Arranged by IDH and 1p/19q Co-deletion Status

Feature IDH Wt (n = 520) IDH mut - non-codel (n = 283) IDH mut - codel (n = 171) Unknown (n = 148)

Clinical

Histology (n)

Astrocytoma 52 (10.0%) 112 (39.6%) 4 (2.3%) 1 (0.7%)

Glioblastoma 419 (80.6%) 32 (11.3%) 2 (1.2%) 137 (92.6%)

Oligoastrocytoma 15 (2.9%) 69 (24.4%) 30 (17.5%) 0 (0%)

Oligodendroglioma 19 (3.7%) 37 (13.1%) 117 (68.4%) 1 (0.7%)

Unknown 15 (2.9%) 33 (11.7%) 18 (10.5%) 9 (6.1%)

Grade (n)

G2 19 (3.7%) 114 (40.3%) 81 (47.4%) 2 (1.4%)

G3 67 (12.9%) 104 (36.7%) 70 (40.9%) 0 (0%)

G4 419 (80.6%) 32 (11.3%) 2 (1.2%) 137 (92.6%)

Unknown 15 (2.9%) 33 (11.7%) 18 (10.5%) 9 (6.1%)

Age

Median (LQ-UQ) 59 (51–68) 38 (30–44) 46 (35–54) 55 (48-68)

Unknown (n) 16 33 18 9

Survival

Median (CI) 14.0 (12.6–15.3) 75.1 (62.1–94.5) 115.8 (90.5–Inf) 12.6 (11.3-14.9)

Unknown (n) 14 32 18 12

KPS

<70 85 (16.3%) 8 (2.8%) 5 (2.9%) 21 (14.2%)

70–80 196 (37.7%) 41 (14.5%) 18 (10.5%) 60 (40.5%)

90 29 (5.6%) 60 (21.2%) 32 (18.7%) 2 (1.4%)

100 51 (9.8%) 44 (15.9%) 30 (17.5%) 14 (9.5%)

Unknown 159 (30.6%) 129 (45.6%) 86 (50.3%) 51 (34.5%)

Molecular

MGMT promoter

Methylated 170 (32.7%) 242 (85.5%) 169 (98.8%) 32 (21.6%)

Unmethylated 248 (47.7%) 36 (12.7%) 1 (0.6%) 34 (23.0%)

Unknown 102 (19.6%) 5 (1.8%) 1 (0.6%) 82 (55.4%)

TERT promoter

Mutant 67 (12.9%) 8 (2.8%) 86 (50.3%) 1 (0.7%)

Wild-type 19 (9.8%) 146 (51.6%) 2 (1.2%) 0 (0%)

Unknown 434 (83.5%) 129 (45.6%) 83 (48.5%) 135 (99.3%)

TERT expression

Expressed 178 (34.2%) 14 (4.9%) 153 (89.5%) 6 (4.1%)

Not expressed 51 (9.8%) 242 (85.5%) 16 (9.4%) 7 (4.7%)

Unknown 291 (56.0%) 27 (9.5%) 2 (1.2%) 135 (91.2%)
detected across 578 cases (73%), mostly occurring in IDH-wild-

type samples (n = 327 of 357, 92%). Conversely, we found that a

set of 36 genes involved in chromatin modification was targeted

by genetic alterations in 423 tumors (54%, n = 36 genes), most of

which belonged to the IDH mutant-non-codel group (n = 230,

87%).

In order to identify new somatically altered glioma genes, we

usedMutComFocal to nominate candidates altered bymutation,

as well as copy number alteration. Prominent among these

genes was NIPBL, a crucial adherin subunit that is essential for

loading cohesins on chromatin (Table S2D) (Peters and Nish-
552 Cell 164, 550–563, January 28, 2016 ª2016 Elsevier Inc.
iyama, 2012). The cohesin complex is responsible for the adhe-

sion of sister chromatids following DNA replication and is essen-

tial to prevent premature chromatid separation and faithful

chromosome segregation during mitosis (Peters and Nishiyama,

2012). Alterations in the cohesin pathway have been reported in

12% of acute myeloid leukemias (Kon et al., 2013). Mutations of

the cohesin complex gene STAG2 had been previously reported

in GBM (Brennan et al., 2013). Taken together, 16% of the LGG/

GBM showed mutations and/or CNAs in multiple genes involved

in the cohesin complex, thus nominating this process as a prom-

inent pathway involved in gliomagenesis.
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Figure 1. Telomere Length Associations in

Glioma

(A) Heatmap of relative tumor/normal telomere

lengths of 119 gliomas, grouped by TERTp and

ATRX mutation status.

(B) Telomere length decreases with increasing age

(measured in years at diagnosis) in blood normal

control samples (n = 137).

(C) Quantitative telomere length estimates of tu-

mors and blood normal, grouped by TERTpmutant

(n = 67, 56%), ATRX mutant (n = 40, 33%), and

double negative (n = 13, 11%) status. *** = p <

0.0001; ** = p < 0.001.
Telomere Length Is Positively Correlatedwith ATRX, but
Not TERT Promoter Mutations
Mutations in the TERT promoter (TERTp) have been reported in

80% of GBM (Killela et al., 2013). We used TERTp mutation

calls from targeted sequencing (n = 287) and complemented

them with TERTp mutations inferred from whole-genome

sequencing (WGS) data (n = 42). TERTp mutations are nearly

mutually exclusive with mutations in ATRX (Eckel-Passow

et al., 2015), which was confirmed in our cohort. Overall,

85% of diffuse gliomas harbored mutations of TERTp (n =

157, 48%) or ATRX (n = 120, 37%). TERTp mutations activate

TERT mRNA expression through the creation of a de novo

E26 transformation-specific (ETS) transcription factor-binding

site (Horn et al., 2013), and we observed significant TERT

upregulation in TERTp mutant cases (p value < 0.0001, Fig-

ure S1A). TERT expression measured by RNA-seq was a highly

sensitive (91%) and specific (95%) surrogate for the presence

of TERTp mutation (Figure S1B). We correlated TERTp status

with glioma driving alterations and observed that nearly all

IDH-wild-type cases with chromosome 7 gain and chromo-

some 10 loss harbored TERTp mutations or upregulated

TERT expression (n = 52/53 and n = 134/147, respectively; Fig-

ure 1A). Conversely, only 45% of IDH-wild-type samples lack-

ing chromosome 7/chromosome 10 events showed TERTp

mutations or elevated TERT expression (n = 15/33 and n =

43/82, respectively). Thus, TERTp mutations may precede the

chr 7/chr 10 alterations that have been implicated in glioma

initiation (Ozawa et al., 2014).
Cell 164, 550–563
To correlate TERTp mutations to telo-

mere length, we used whole-genome

sequencing and low pass whole-genome

sequencing data to estimate telomere

length in 141 pairs of matched tumor

and normal samples. As expected, we

observed an inverse correlation of telo-

mere length with age at diagnosis in

matching blood normal samples (Fig-

ure 1B) and tumor samples (Figure S1C).

Glioma samples harboring ATRX muta-

tions showed significantly longer telo-

meres compared to TERTp mutant sam-

ples (t test p value < 0.0001; Figure 1C).

Among TERTp mutation gliomas, there
was no difference in telomere length between samples with and

without additional IDH1/IDH2 mutations, despite a difference in

age. ATRX forms a complex with DAXX and H3.3, and the genes

encoding these proteins are frequently mutated in pediatric gli-

omas (Sturm et al., 2012). Mutations in DAXX and H3F3A were

identified in only two samples in our WGS dataset. The ATRX-

DAXX-H3.3 complex is associated with the alternative length-

ening of telomeres (ALT) and our observations confirmpreviously

hypothesized fundamental differences between the telomere

control exerted by telomerase and ALT (Sturm et al., 2014).

As demonstrated by the identification of TERTpmutations, so-

matic variants affecting regulatory regionsmay play a role in glio-

magenesis. Using 67 matched whole-genome and RNA-seq

expression pairs, we similarly sought to identify mutations

located within 2 kb upstream of transcription start sites and

associated with a gene expression change. Using strict filtering

methods, we identified 12 promoter regions with mutations in

at least 6 samples. Three of 12 regions related to a significant

difference in the expression of the associated gene expression,

suggesting possible functional consequences. Other than TERT

(n = 37), promotermutations of the ubiquitin ligase TRIM28 (n = 8)

and the calcium channel gamma subunit CACNG6 (n = 7) corre-

lated with respectively upregulation and downregulation of these

genes, respectively (Table S2E). TRIM28 has been reported to

mediate the ubiquitin-dependent degradation of AMP-activated

protein kinase (AMPK) leading to activation of mTOR signaling

and hypersensitization to AMPK agonists, such as metformin

(Pineda et al., 2015).
, January 28, 2016 ª2016 Elsevier Inc. 553



Figure 2. Pan-glioma DNA Methylation and Transcriptome Subtypes

(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).

(B) Heatmap of RNA sequencing data. Unsupervised clustering analysis for 667 TCGA glioma samples profiled using RNA sequencing are plotted in the heatmap

using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.

(C) TumorMap based onmRNA expression andDNAmethylation data. Each data point is a TCGA sample colored coded according to their identified status. A live

interactive version of this map is available at http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper.
Unsupervised Clustering of Gliomas Identifies Six
Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-

oma dataset, we analyzed 932 glioma samples profiled on the

HumanMethylation450 platform (516 LGG and 129 GBM) and

the HumanMethylation27 platform (287 GBM). In order to incor-

porate the maximum number of samples, we merged datasets

from both methylation platforms yielding a core set of 25,978

CpG probes. To reduce computational requirements to cluster

this large dataset, we eliminated sites that were methylated

(mean b value R 0.3) in non-tumor brain tissues and selected

1,300 tumor-specific methylated probes (1,300/25,978, 5%) to

perform unsupervised k-means consensus clustering. This iden-

tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables

S1 and S3A). Next, we sought to determine pan-glioma expres-

sion subtypes through unsupervised clustering analysis of 667

RNA-seq profiles (513 LGG and 154 GBM), which resulted in

four main clusters labeled LGr1–4 (Figure 2B and Tables S1

and S3A). An additional 378 GBM samples with Affymetrix HT-

HG-U133A profiles (but lacking RNA-seq data) were classified

into the four clusters using a k-nearest neighbor classification

procedure. IDH mutation status was the primary driver of meth-

ylome and transcriptome clustering and separated the cohort

into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-

ation macro-group carried IDH1 or IDH2 mutations (449 of 450,

99%) and was enriched for LGG (421/454, 93%) while LGm4/
554 Cell 164, 550–563, January 28, 2016 ª2016 Elsevier Inc.
LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched

for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-

methylation compared to LGm4–6 clusters (Figure S2A), docu-

menting the association between IDH mutation and increased

DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).

Principal component analysis using 19,520 probes yielded

similar results, thus emphasizing that our probe selection

method did not introduce unwanted bias (Figure S2B). The

gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-

tions (438 of 533, 82%) and were enriched for LGG (436/563,

77%), while the LGr4 was exclusively IDH-wild-type (376 of

387, 97%) and enriched for GBM (399/476, 84%).

We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering

analysis of the combined gene expression (n = 1,196) and DNA

methylation (n = 867) profiles. An interactive Tumor Map version

is publicly available at http://tumormap.ucsc.edu/?p=ynewton.

gliomas-paper. Tumor Map assigns samples to a hexagon in a

grid so that nearby samples are likely to have similar genomic

profiles and allows visualizing complex relationships between

heterogeneous genomic data samples and their clinical or

phenotypical associations. Thus, clusters in the map indicate

groups of samples with high similarity of integrated gene expres-

sion and DNAmethylation profiles (Figure 2C). Themap confirms

clustering by IDH status and additionally shows islands of sam-

ples that share previously reported GBM cluster memberships

(Noushmehr et al., 2010; Verhaak et al., 2010). To assess

http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper
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clustering sensitivity to pre-processing, we tried complementary

methods and obtained similar results (Figure S2C).

To identify genes whose copy number changes are associated

with concordant changes in gene expression, we combined

expression and copy number profiles from 659 samples to define

a signature of 57 genes with strong functional copy number (fCN)

change (Table S3B). The fCN signature clustered gliomas into

three macro-clusters, LGfc1–3, strongly associated with IDH

and 1p/19q status (Figure S2D). The fCN analysis revealed the

functional activation of a cluster of HOXA genes in the IDH-

wild-type LGfc2 cluster, which were previously associated with

glioma stem cell maintenance (Kurscheid et al., 2015).

Finally, we clustered reverse phase protein array profiles, con-

sisting of 196 antibodies on 473 samples. Two macro clusters

were observed, and in contrast to the transcriptome/methyl-

ome/fCNV clustering, the primary discriminator was based on

glioma grade (LGG versus GBM) rather than IDH status (Fig-

ure S2E). Compared to the LGG-like cluster, the GBM-like

cluster had elevated expression of IGFBP2, fibronectin, PAI1,

HSP70, EGFR, phosphoEGFR, phosphoAKT, Cyclin B1, Caveo-

lin, Collagen VI, Annexin1, and ASNS, whereas the LGG class

showed increased activity of PKC (alpha, beta, and delta),

PTEN, BRAF, and phosphoP70S6K.

The above results confirm IDH status as themajor determinant

of the molecular footprints of diffuse glioma. To further elucidate

the subtypes of diffuse glioma, we performed unsupervised clus-

tering within each of the two IDH-driven macroclusters. We used

1,308 tumor-specific CpG probes defined among the IDH muta-

tion cohort (n = 450) and identified three IDH mutant-specific

DNAmethylation clusters (Figure S3A). Using 914 tumor-specific

CpG probes in the IDH-wild-type cohort (n = 430), we uncovered

three IDH-wild-type-specific clusters (Figure S4A). The sets of

CpG probes used to cluster each of the two IDH-driven datasets

overlapped significantly with the 1,300 probes that defined the

pan-glioma DNA methylation clustering (1162/1,300, 89% and

853/1,300, 66%, for IDH mutant and IDH-wild-type, respec-

tively). The clusters identified by separating IDH mutant and

IDH-wild-type gliomas showed strong overall concordance

with pan-glioma DNA methylation subtypes (Table S3A). Simi-

larly, unsupervised clustering of 426 IDH mutant RNA-seq pro-

files resulted in three subtypes (Figure S3A), and analysis of

the 234 IDH-wild-type samples led to four mixed LGG/GBM

clusters that showed enrichment for previously identified GBM

expression subtypes (Figure S4C) (Verhaak et al., 2010).
Figure 3. Identification of a Distinct G-CIMP Subtype Defined by Epige

(A) Heatmap of probes differentially methylated between the two IDHmutant-non

subgroup named G-CIMP-low. Non-tumor brain samples (n = 12) are represente

(B) Heatmap of genes differentially expressed between the two IDH mutant-non-

(C) Kaplan-Meier survival curves of IDH mutant methylation subtypes. Ticks repr

(D) Distribution of genomic alterations in genes frequently altered in IDH mutant

(E) Genomic distribution of 633 CpG probes differentially demethylated between c

genome browser-defined CpG Islands, shores flanking CpG island ± 2 kb and o

(F) DNA methylation heatmap of TCGA glioma samples ordered per Figure 2A and

G-CIMP-high, and Codel subtypes. The mean RNA sequencing counts for each

plotted to the right.

(G) Heatmap of the validation set classified using the random forest method app

(H) Heatmap of probes differentially methylated between G-CIMP-low and G-CIM

556 Cell 164, 550–563, January 28, 2016 ª2016 Elsevier Inc.
An Epigenetic Signature Associated with Activation of
Cell Cycle Genes Segregates a Subgroup of IDH Mutant
LGG and GBM with Unfavorable Clinical Outcome
The three epigenetic subtypes defined by clustering IDH mutant

glioma separated samples harboring the 1p/19q co-deletion into

a single cluster and non-codel glioma into two clusters (Fig-

ure S3A). Conversely, non-codel glioma grouped nearly exclu-

sively into a single expression cluster, and codels were split in

two separated expression clusters (Figure S3A). A distinct sub-

group of samples within the IDH mutant-non-codel DNA methyl-

ation clusters manifested relatively reduced DNA methylation

(Figure S3B). The unsupervised clustering of IDH mutant glioma

was unable to segregate the lower methylated non-codel sub-

group as the 1,308 probes selected for unsupervised clustering

included only 19 of the 131 differentially methylated probes char-

acteristic for this subgroup (FDR < 10�15, difference in mean

methylation beta value > 0.27). The low-methylation subgroup

consisted of both G-CIMP GBM (13/25) and LGGs (12/25) and

was confirmed using a non-TCGA dataset (Figure S3C). The tu-

mors with higher methylation in the split cluster were very similar

to those grouped in the second non-codel cluster, and a super-

vised comparison identified only 12 probes as differentially DNA

methylated (Figures 3A and 3B). We concluded that IDH mutant

glioma is composed of three coherent subgroups: (1) the Codel

group, consisting of IDH mutant-codel LGGs; (2) the G-CIMP-

low group, including IDH mutant-non-codel glioma (LGG and

GBM) manifesting relatively low genome-wide DNAmethylation;

and (3) the G-CIMP-high group, including IDHmutant-non-codel

glioma (LGG and GBM) with higher global levels of DNA methyl-

ation. The newly identified G-CIMP-low group of glioma was

associated with significantly worse survival as compared to the

G-CIMP-high and Codel groups (Figure S3D). The clinical

outcome of the tumors classified as G-CIMP-high was as favor-

able as that of Codel tumors, the subgroup generally thought to

have the best prognosis among glioma patients (Figures 3C and

S3D). We compared the frequencies of glioma driver gene alter-

ations between the three types of IDH mutant glioma and found

that 15 of 18 G-CIMP-low cases carried abnormalities in cell

cycle pathway genes such as CDK4 and CDKN2A, relative to

36/241 and 2/172 for G-CIMP-high and Codels, respectively

(Figure 3D). Supervised analysis between gene expression of

G-CIMP-low and G-CIMP-high resulted in 943 differentially ex-

pressed genes. We mapped the 943 deregulated genes to 767

nearest CpG probes (max distance 1 kb) and found the majority
nomics

-codel DNAmethylation clusters allowed the identification of a low-methylation

d on the left of the heatmap.

codel DNA methylation clusters.

esent censored values.

glioma.

o-clustered G-CIMP-low andG-CIMP-high. CpG probes are grouped by UCSC
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the epigenetically regulated (EReg) gene signatures defined for G-CIMP-low,

gene matched to the promoter of the identified cgID across each cluster are

lying the 1,300 probes defined in Figure 2A.

P-high in longitudinally matched tumor samples.



of the CpG probes (486/767, 63%) to show a significant methyl-

ation difference (FDR< 0.05, difference inmeanmethylation beta

value > 0.01) between G-CIMP-low and G-CIMP-high, suggest-

ing a mechanistic relation between loss of methylation and

increased transcript levels.

Recent analysis of epigenetic profiles derived from colon can-

cers showed that transcription factors may bind to regions

of demethylated DNA (Berman et al., 2012). Therefore, we

asked whether transcription factors may be recruited to the

DNA regions differentially methylated between G-CIMP-low

samples and G-CIMP-high samples from the same methylation

cluster, using 450K methylation profiles (n = 39). Globally, we

detected 643 differentially methylated probes between 27

G-CIMP-low and 12 G-CIMP-high samples (absolute diff-mean

difference R 0.25, FDR % 5%). Most of these probes (69%)

were located outside of any known CpG island but positioned

within intergenic regions known as open seas (Figure 3E). This

represents a 2.5-fold open sea enrichment compared to the

expected genome-wide distribution of 450K CpG probes (chi-

square p value < 2.2 3 10�16). We also observed a 3.4-fold

depletion within CpG islands (chi-square p value < 2.2 3 10�16).

Using this set of intergenic CpG probes, we asked whether a

DNA motif signature associated with distal regulatory elements.

Such a pattern would point to candidate transcription factors

involved in tumorigenesis of the G-CIMP-low group. A de novo

motif scan and knownmotif scan identified a distinct motif signa-

ture TGTT (geometric test p value = 10�11, fold enrichment = 1.8),

known to be associated with the OLIG2 and SOX transcription

factor families (Figure 3E) (Lodato et al., 2013). This observation

was corroborated by the higher expression levels of SOX2, as

well as 17 out of 20 other known SOX family members in G-

CIMP-low compared to G-CIMP-high (fold difference > 2). The

primary function of SOX2 in the nervous system is to promote

self-renewal of neural stem cells and, within brain tumors, the gli-

oma stem cell state (Graham et al., 2003). Interestingly, SOX2

and OLIG2 have been described as neurodevelopmental tran-

scription factors being essential for GBM propagation (Suvà

et al., 2014). Supervised gene expression pathway analysis of

the genes activated in the G-CIMP-low group as opposed to

G-CIMP-high group revealed activation of genes involved in

cell cycle and cell division consistent with the role of SOX in pro-

moting cell proliferation (Figure S3E). The enrichment in cell cy-

cle gene expression provides additional support to the notion

that development of the G-CIMP-low subtype is associated

with activation of cell cycle progression and may be mediated

by a loss of CpG methylation and binding of SOX factors to

candidate genomic enhancer elements.

To validate the G-CIMP-low, G-CIMP-high, and Codel IDH

mutant subtypes, we compiled a validation cohort from pub-

lished studies, including 324 adult and pediatric gliomas

(Lambert et al., 2013; Mur et al., 2013; Sturm et al., 2012; Turcan

et al., 2012). The CpG probemethylation signatures used to clas-

sify the validation set are provided on the publication portal

accompanying this publication (https://tcga-data.nci.nih.gov/

docs/publications/lgggbm_2015/). Among them, 103 were iden-

tified as IDH mutant on the basis of their genome-wide DNA

methylation profile. We classified samples in the validation set

using the probes that defined the IDH mutant-specific DNA
methylation cluster analysis integrated in a supervised random

forest method. The analysis recapitulated the clusters generated

from the TCGA collection (Figure S3C). In order to determine

epigenetically regulated (EReg) genes that may be characteristic

of the biology of the IDH mutant diffuse glioma subtypes, we

compared 450k methylation DNA methylation profiles and

gene expression levels between 636 IDH mutant and IDH-wild-

type gliomas and 110 non-tumor samples from 11 different

tissue types. From the list of epigenetically regulated genes,

we extracted 263 genes that were grouped into EReg gene sig-

natures, which showed differential signals among the three

IDH mutant subtypes (Figure 3F). These trends were confirmed

in the validation set (Figure 3G).

We investigated the possibility that the G-CIMP-high group is

a predecessor to the G-CIMP-low group by comparing the DNA

methylation profiles from ten IDH mutant-non-codel LGG

and GBM primary-recurrent cases with the TCGA cohort. We

evaluated the DNA methylation status of probes identified as

differentially methylated (n = 90) between G-CIMP-low and G-

CIMP-high (FDR < 10�13, difference in mean methylation beta-

value > 0.3 and <�0.4). Four out of ten IDHmut-non-codel cases

showed a demethylation pattern after disease recurrence, while

partial demethylation was demonstrated in the remaining six re-

currences, supporting the notion of a progression from G-CIMP-

high to G-CIMP-low phenotype (Figure 3H).

An IDH-Wild-Type Subgroup of Histologically Defined
Diffuse Glioma Is Associated with Favorable Survival
and Shares Epigenomic and Genomic Features with
Pilocytic Astrocytoma
IDH-wild-type gliomas segregated into three DNA methylation

clusters (Figure S4A). The first is enriched with tumors belonging

to the classical gene expression signature and was labeled

Classic-like, whereas the second group, enriched with mesen-

chymal subtype tumors, was labeled Mesenchymal-like (Table

S1) (Verhaak et al., 2010). The third cluster contained a larger

fraction of LGG in comparison to the other IDH-wild-type clus-

ters. We observed that the IDH-wild-type LGGs but not the

IDH-wild-type GBM in this cluster displayed markedly longer

survival (log-rank p value = 3.6 3 10�5; Figure 4A) and occurred

in younger patients (mean 37.6 years versus 50.8 years, t test p

value = 0.002). Supervised analysis of differential methylation

between LGG and GBM in the third DNA methylation cluster

did not reveal any significant probes despite significant differ-

ences in stromal content (p value < 0.005; Figure S4D), suggest-

ing that this group cannot be further separated using CpG

methylation markers.

Next, we sought to validate the methylation-based classifica-

tion of IDH-wild-type glioma in an independent cohort of 221

predicted IDH-wild-type glioma samples, including 61 grade I pi-

locytic astrocytomas (PAs). Toward this aim, we used a super-

vised random forest model built with the probes that defined

the IDH-wild-type clusters. Samples classified as Mesen-

chymal-like showed enrichment for the Sturm et al. (2012)

Mesenchymal subtype (29/88), and gliomas predicted as

Classic-like were all RTK II ‘‘Classic’’ (22/22), per the Sturm

et al. (2012) classification (Figures 4B and S4B). We observed

that PA tumors were unanimously classified as the third,
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Figure 4. A Distinct Subgroup of IDH-Wild-Type Diffuse Glioma with Molecular Features of Pilocytic Astrocytoma

(A) Kaplan-Meier survival curves for the IDH-wild-type glioma subtypes. Ticks represent censorship.

(B) Distribution of previous published DNA methylation subtypes in the validation set, across the TCGA IDH-wild-type-specific DNA methylation clusters.

(C) Distribution of genomic alterations in genes frequently altered in IDH-wild-type glioma.

(D) Heatmap of TCGA glioma samples ordered according to Figure 2A and two EReg gene signatures defined for the IDH-wild-type DNA methylation clusters.

Mean RNA sequencing counts for each gene matched to the promoter of the identified cgID across each cluster are plotted to the right.

(E) Heatmap of the validation set classified using the random forest method using the 1,300 probes defined in Figure 2A.
LGG-enriched group (Figure S4B). Based on the molecular sim-

ilarity with PA, we labeled the LGGs in the third methylation clus-

ter of IDH-wild-type tumors as PA-like. The GBMs in this group

were best described as LGm6-GBM for their original pan-glioma

methylation cluster assignment and tumor grade.

Pilocytic astrocytomas are characterized by frequent alter-

ations in the MAPK pathway, such as FGFR1 mutations,

KIAA1549-BRAF, and NTRK2 fusions (Jones et al., 2013). The

frequency of mutations, fusions, and amplifications in eight

PA-associated genes (BRAF, NF1, NTRK1, NTRK2, FGFR1,

and FGFR2) rated from 11% (n = 12/113) of Classic-like, 13%

(n = 21/158) of Mesenchymal-like IDH-wild-type tumors to

32% (n = 7/22) of LGm6-GBM and 52% (n = 13/25) of PA-like

LGG (Fisher’s exact test [FET] p value < 0.0001; Figure 4C).

Conversely, only 2 of 25 (8%) PA-like LGG tumors showed
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TERT expression, compared to 5 of 12 LGm6-GBM (43%), 60

of 65 Classic-like (92%), and 82 of 98 Mesenchymal-like (84%,

FET p value < 0.0001). The PA-like group was characterized by

relatively low frequency of typical GBM alterations in genes

such as EGFR, CDKN2A/B, and PTEN and displayed euploid

DNA copy number profiles (Figure S4E). To ascertain that the

histologies of the PA-like subgroup had been appropriately

classified, we conducted an independent re-review. This anal-

ysis confirmed the presence of the histologic features of diffuse

glioma (grade II or grade III) in 23 of the 26 cases in the cluster.

The remaining three cases were re-named as PA (grade I). An

independent review of the magnetic resonance diagnostic

images from 13 cases showed a similar pattern, with the ma-

jority of tumors showing behavior consistent with grade II or

grade III glioma. Taken together, the epigenetic analysis of the



Table 2. DNA Methylation Subtypes Are Prognostically Relevant in Multivariable Analysis and in External Validation Data

Discovery (n = 809) Validation (n = 183)

C-Index: 0.835 ± 0.019 C-Index: 0.745 ± 0.032

Predictor Levels n HR (95% CI) Signif. n HR (95% CI) Signif.

Age at diagnosis per year 809 1.05 (1.03–1.06) *** 183 1.02 (1–1.04) *

WHO Grade II 214 1.0 (ref) 41 1.0 (ref)

III 241 1.96 (1.15–3.33) * 51 1.24 (0.55–2.76)

IV 354 2.38 (1.3–4.34) * 91 2.6 (1.08–6.3) *

Subgroup IDHmut-codel 156 1.0 (ref) 57 1.0 (ref)

G-CIMP-low 22 5.6 (2.49–12.62) *** 2 0 (0–Inf)

G-CIMP-high 219 1.92 (1.05–3.51) * 15 1.25 (0.43–3.66)

classic-like 143 5.4 (2.79–10.44) *** 22 4.55 (1.8–11.49) *

mesenchymal-like I 204 8.71 (4.59–16.53) *** 61 5.55 (2.52–12.21) ***

LGm6-GBM 39 5.79 (2.78–12.1) *** 22 6.8 (2.58–17.91) **

PA-like 26 2.02 (0.71–5.71) 4 3.64 (0.79–16.78) .

Survival regression analysis indicates that an optimal model of prognosis includes age, grade, and methylation subtype. These predictors are statis-

tically significant in both our discovery dataset and an external validation dataset. Significance codes: 0 ‘‘***’’; 0.001 ‘‘**’’; 0.05 ‘‘*’’; 0.1 ‘‘.’’
IDH-wild-type group of adult glioma revealed the existence of a

novel subgroup sharing genetic and DNA methylation features

with pediatric PA and favorable clinical outcome compared to

diffuse IDH-wild-type glioma. This group may include but ex-

tends beyond BRAF-mutated grade II oligodendroglioma that

were previously recognized as a unique clinical entity (Chi

et al., 2013).

Through comparison of the methylation profiles of 636 glioma

and 110 non-neoplastic normal samples from different tissue

types, we defined EReg signatures consisting of 27 genes that

showed differential signals among IDH-wild-type subtypes in

the TCGA (Figure 4D) and the validation set (Figure 4E). EReg4

comprised a group of 15 genes hypermethylated and downregu-

lated in particularly Classic-like. EReg5 was defined as a group

of 12 genes associated with hypomethylation in LGm6/PA-like

compared to all other LGm clusters. These ERegs aided in char-

acterizing the biological importance of IDH-wild-type subtypes

and were subsequently used to evaluate the prognostic impor-

tance of the IDH-wild-type clusters.

The Epigenetic Classification of Glioma Provides
Prognostic Value Independent of Age and Grade
In order to assess whether the DNAmethylation-based subtypes

we identified carry prognostically relevant information indepen-

dent of known overall survival predictors, we constructed a se-

ries of survival regression models. To find the optimal model

for survival prediction, we studied covariates individually and in

combination with other covariates. Age at diagnosis, histology,

IDH/codel subtype, TERT expression, and epigenetic subtype

all contribute to survival in single-predictor analysis (log-rank p

value < 0.05, Table S4). As expected, age was a highly significant

predictor (p < 0.0001, C-Index 0.78) and was included in all sub-

sequent multi-predictor models. We found that histology and

grade are highly correlated. Histology provided only marginal

improvement to a model that includes grade (likelihood ratio

test [LRT] p value = 0.08) and was therefore not included in

further analyses. Conversely, grade markedly impacted a histol-
ogy-based predictor model (LRT p value = 0.0005, Table S4) and

was retained in the subsequent models. In contrast to previous

reports (Eckel-Passow et al., 2015), we failed to observe a statis-

tically significant and independent survival association with

TERT expression (LRT p value = 0.82, Table S4) or TERTpmuta-

tions after accounting for age and grade (LRT p value = 0.85,

data not shown). Thus, the optimal survival prediction model in-

cludes age, grade, and epigenetic subtype (LRT p value <

0.0001, C-Index 0.836; Table 2).

To confirm that the epigenetic subtypes provide independent

prognostic information, we tested the survival model on the

validation dataset. Epigenetic subtypes in these samples

were determined as described above. The distinction between

LGm6-GBM and PA-like gliomas was made on the basis of tu-

mor grade and not by DNAmethylation signature. Using a subset

of 183 samples in the validation cohort with known survival, age,

and grade, we found that epigenetic subtypes are significant in-

dependent predictors of survival in the multivariate analysis (LRT

p value < 0.0001, C-Index 0.746, Table 2). This generalization of

our model supports the epigenetic subtypes as a means to

improve the prognostication of glioma.

Activation of Cell Cycle/Proliferation and Invasion/
Microenvironmental Changes Marks Progression of
LGG to GBM
We observed that, in spite of morphological differences between

LGG and GBM, such as high cell density and microvascular pro-

liferation, clustering of gene expression profiles frequently

grouped LGG and GBM together within the same subtype.

Gene Set Enrichment Analysis of the genes activated in G-

CIMP GBM as opposed to the IDH mutant-non-codel within

LGr3 (Figure 2B) revealed four major groups, including cell cycle

and hyperproliferation, DNA metabolic processes, response to

stress, and angiogenesis (Figure S5A and Table S5). These bio-

logical functions are consistent with the criteria based on mitotic

index used by pathologists to discriminate lower and high-grade

glioma and the significance of activated microglia for tumor
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aggressiveness (Roggendorf et al., 1996). Conversely, com-

pared with the G-CIMP GBM, IDH mutant-non-codel LGG in

LGr3 were characterized by enrichment of genes associated

with neuro-glial functions such as ion transport and synaptic

transmission, possibly suggesting a more differentiated nature.

The comparison of co-clustered GBM and LGG in LGr3 by the

PARADIGM algorithm that integrates DNA copy number and

gene expression to infer pathway activity confirmed that

GBMs express genes associated with cell cycle, proliferation,

and aggressive phenotype through activation of a number of

cell cycle, cell replication, and NOTCH signaling pathways

whereas LGGs exhibit an enrichment of neuronal-differentia-

tion-specific categories, including synaptic pathways (Fig-

ure S5C and Table S5).

The analysis of the genes activated in GBM versus the LGG

component of LGr4, which grouped IDH-wild-type tumors, iden-

tified an inflammation and immunologic response signature

characterized by the activation of several chemokines (CCL18,

CXCL13, CXCL2, and CXCL3) and interleukins (IL8 and

CXCR2) enriching sets involved in inflammatory and immune

response, negative regulation of apoptosis, cell cycle and prolif-

eration, and the IKB/NFKB kinase cascadeMap (Figure S5B and

Table S5). These characteristics suggest differences in the rela-

tive amount of microglia. We used the ESTIMATE method to es-

timate the relative presence of stromal cells, which revealed

significantly lower (p value 10�6) stromal scores of LGG IDH-

wild-type versus GBM IDH-wild-type (Figure S5F) (Yoshihara

et al., 2013). Resembling the functional enrichment for LGG

within LGr3, functional enrichment of LGG IDH-wild-type in com-

parison to GBMwithin LGr4 showed activation in LGG of special

glial-neuronal functions involved in ion transport, synaptic trans-

mission, and nervous system development.

Finally, we aimed to identify transcription factors that may

exert control over prominent gene expression programs, known

as master regulators. Master regulator analysis comparing the

IDH-wild-type group to the IDHmutant group revealed transcrip-

tion factors that were upregulated in IDH-wild-type gliomas and

showed an increase in expression of target genes, including

NKX2-5, FOSL1, ETV4, ETV7, RUNX1, CEBPD, NFE2L3, ELF4,

RUNX3,NR2F2,PAX8, and IRF1 (Table S5). No transcription fac-

tors (TFs) were found to be upregulated in IDH mutant gliomas

relative to IDH-wild-type gliomas (at a log fold change > 1).

DISCUSSION

This study represents the largest multi-platform genomic anal-

ysis performed to date of adult diffuse glioma (WHO grades II,

III, and IV). A simplified graphical summary of the identified

groups and their main clinical and biological characteristics is re-

ported in Figure 5. The clustering of all diffuse glioma classes and

grades within similarly shaped methylation-based and expres-

sion-based groups has allowed us to pinpoint specific molecular

signatures with clinical relevance. The DNA methylation classifi-

cation proposed should be considered as a basis and it is likely

that future studies involving significantly larger cohorts andmore

refined profiling methods will be able to further reduce intra-sub-

type heterogeneity. The dissection of the IDH mutant non-codel

G-CIMP LGG and GBM into two separate subgroups (G-CIMP-
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low andG-CIMP-high) based on the extent of genome-wide DNA

methylation has crucial biological and clinical relevance. In

particular, the identification of the G-CIMP-low subset, charac-

terized by activation of cell cycle genes mediated by SOX bind-

ing at hypomethylated functional genomic elements and unfa-

vorable clinical outcome, is an important finding that will guide

more accurate segregation and therapeutic assessment in a

group of patients in which correlations of conventional grading

with outcome are modest (Olar et al., 2015; Reuss et al., 2015).

The finding that G-CIMP-high tumors can emerge as G-CIMP-

low glioma at recurrence identifies variations in DNAmethylation

as crucial determinants for glioma progression and provides a

clue to the mechanisms driving evolution of glioma. Our results

unify previous observations that linked the cell cycle pathway

to malignant progression of low-grade glioma (Mazor et al.,

2015). Future updates of the TCGA glioma clinical annotation

and independent validation of our findings may be able to

consider additionally important clinical confounders such as

extent of resection and performance status to further optimize

the weights of the currently known prognostic variables and their

association to the molecular subtypes we identified.

Analysis of IDH-wild-type glioma revealed the PA-like LGG

subset that harbors a silent genomic landscape, confers favor-

able prognosis relative to other IDH-wild-type diffuse glioma,

and displays a molecular profile with high similarity to PA. Re-re-

view by neuropathologists and neuroradiologists confirmed that

the majority were correctly diagnosed as diffuse glioma, empha-

sizing the need for integration of molecular signatures intro clin-

ical classification (Chi et al., 2013) for this subgroup of patients

that may be spared potentially unnecessary intensive

treatments.

The large number of exomes in our dataset allowed identifica-

tion of novel glioma-associated somatic alterations, including in

the KRAS and NRAS genes, which were frequently used in

genetically engineered glioma mouse models (Holland et al.,

2000). Our analysis further nominates glial tumors to join an

increasing number of tumor types characterized by a deacti-

vated cohesin pathway (Kon et al., 2013; Solomon et al., 2011).

Cohesin mutant tumors may infer increased sensitivity to DNA

damage agents and PARP inhibitors (Bailey et al., 2014),

suggesting that gliomas with genetic alterations of key cohesin

regulatory factors may represent biomarkers and therapeutic

opportunities.

Overexpression of TERT mRNA was found to be associated

with increased telomere length in urothelial cancer (Borah

et al., 2015). Our results revealed that, in gliomas, increased telo-

mere length is associated with ATRX mutations, suggesting an

alternative lengthening of telomeres (ALT) mechanism. ALT has

been associated with sensitivity to inhibition of the protein kinase

ATR (Flynn et al., 2015).

In summary, our pan-glioma analysis has expanded our

knowledge of the glioma somatic alteration landscape, empha-

sized the relevance of DNA methylation profiles as a modality

for clinical classification, and quantitatively linked somatic

TERT pathway alterations to telomere maintenance. Combined,

these findings are an important step forward in our understand-

ing of glioma as discrete disease subsets and the mechanisms

driving gliomagenesis.



(legend on next page)
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EXPERIMENTAL PROCEDURES

Patient and Sample Characteristics

Specimens were obtained from patients with appropriate consent from institu-

tional review boards. Details of sample preparation are described in the Sup-

plemental Experimental Procedures.

Data Generation

In total, tumors from 1,132 patients were assayed on at least one molecular

profiling platform, which platforms included: (1) whole-genome sequencing,

including high coverage and low pass whole-genome sequencing; (2) exome

sequencing; (3) RNA sequencing; (4) DNA copy-number and single-nucleotide

polymorphism arrays, including Agilent CGH 244K, Affymetrix SNP6.0, and

Illumina 550K Infinium HumanHap550 SNP Chip microarrays; (5) gene expres-

sion arrays, including Agilent 244K Custom Gene Expression, Affymetrix

HT-HGU133A and Affymetrix Human Exon 1.0 ST arrays; (6) DNA methyl-

ation arrays, including Illumina GoldenGate Methylation, Illumina Infinium

HumanMethylation27, and Illumina Infinium HumanMethylation450 Bead-

Chips; (7) reverse phase protein arrays; (8) miRNA sequencing; and (9) miRNA

Agilent 8 3 15K Human miRNA-specific microarrays. Details of data genera-

tion have been previously reported (Brennan et al., 2013; Cancer Genome

Atlas Research Network et al., 2015). To ensure cross-platform comparability,

features from all array platforms were compared to a reference genome.

Data Analysis

The data and analysis results can be explored through the Broad Institute

FireBrowse portal (http://firebrowse.org/?cohort=GBMLGG), the cBioPortal

for Cancer Genomics (http://www.cbioportal.org/study.do?cancer_study_

id=lgggbm_tcga_pub), in a Tumor Map (http://tumormap.ucsc.edu/?

p=ynewton.gliomas-paper), the TCGA transcript fusion portal (http://www.

tumorfusions.org), TCGA Batch Effects (http://bioinformatics.mdanderson.org/

tcgambatch/), Regulome Explorer (http://explorer.cancerregulome.org/), Next-

Generation Clustered Heat Maps (http://bioinformatics.mdanderson.org/

TCGA/NGCHMPortal/). See also Supplemental Information and the TCGA pub-

lication page (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/).

SUPPLEMENTAL INFORMATION
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